
Object Model Reference
Openwave Usabi l i ty In terface, Java Edi t ion 1 .0 Beta
Openwave Systems Inc.
1400 Seaport Boulevard
Redwood City, CA 94063 U.S.A.
http://www.openwave.com

Part Number OJAR-10-005
October 2001

http://www.openwave.com

LEGAL NOTICE

Copyright © 1999–2001 Openwave Systems Inc. All rights reserved.

The contents of this document constitute valuable proprietary and confidential property of Openwave Systems Inc. and are provided
subject to specific obligations of confidentiality set forth in one or more binding legal agreements. Any use of this material is limited
strictly to the uses specifically authorized in the applicable license agreement(s) pursuant to which such material has been furnished.
Any use or disclosure of all or any part of this material not specifically authorized in writing by Openwave Systems Inc. is strictly
prohibited.

Openwave, the Openwave logo and the family of terms carrying the “Openwave” prefix are trademarks of Openwave Systems Inc.
All other trademarks are the properties of their respective owners.

All other company, brand, and product names are referenced for identification purposes only and may be trademarks that are the
sole property of their respective owners.

Contents
Preface v
About This Guide v
Related Documentation v
Technical Support v

1: Object Model Reference 1
Anchor 2
Appendix 4
BodyPager 5
Button 8
Caller 9
Card 11
Check 21
ComboMenu 24
Deck 26
DeviceContext 27
DoElement 30
Form 33
Head 42
HRule 45
Image 47
Input 50
Menu 53
Onevent 56
Picker 57
PickerCard 59
Popup 63
Radio 66
SimpleLink 69
Table 71
Task 75
TaskMenu 77
Template 80
Timer 81
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference iii

Contents
iv Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Preface
About This Guide
This guide is a reference to the OpenwaveTM Usability Interface (OUI), wireless
application object model, expressed as a Java API. You can use the OUI objects to create a
single Wireless Markup Language (WML) application that will operate optimally on
various types of Wireless Application Protocol (WAP) devices. This guide assumes
familiarity with WML and Java.

Related Documentation
In addition to this guide, OUI comes with the following documentation:

• Installation and Integration describes how to install the OUI software and how to
configure it to work with a Java server. It also includes a basic example servlet.

• Getting Started introduces OUI and describes how to use it.

• XTHML Tab Library Reference is a reference to the XHTML tags you can use in your
OUI applications.

• WML Tag Library Reference is a reference to the WML tags you can use in your OUI
applications.

You will also find valuable the WML 1.3 Language Reference and related documentation
that come with the Openwave SDK. For a complete list of Openwave documentation for
developers, see the Openwave Developer site:

http://developer.openwave.com

Technical Suppor t
Your best resource for information about OUI and other Openwave products,
technologies, and solutions related to OUI is the Openwave Developer web site:

http://developer.openwave.com/

Openwave updates this site frequently to include late-breaking information.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference v

http://developer.openwave.com
http://www-tac.phone.com/

Preface
Technical Support
vi Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

1
Chapter 1 Object Model Reference
You can use the Openwave Usability Interface (OUI) Java API to create and enrich an
object model that represents an ideally usable WML application. The objects that you use
to build this model in this edition of OUI are instances of Java classes. This book is a
reference these objects and their Java methods.

Some OUI objects are direct counterparts of WML elements. Examples include Anchor,
Deck, Input, and Timer.

Other OUI objects abstract WML at a higher level, and may be rendered differently on
different devices. Examples include BodyPager, Menu, and PickerCard.

For information about using OUI, this API, and the WML and XHTML tag libraries to
build wireless applications, see the OUI Getting Started book and the tag library
references.

For more information about WML, see the WML 1.3 Developer’s Guide, Language
Reference, and related documentation that come with the Openwave SDK.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 1

Object Model Reference
Anchor1
Anchor
The Anchor object encapsulates the WML <anchor> element and specifies a link to
another card, deck, or resource. Anchor is similar to SimpleLink in many ways. The
main difference is that any task can be associated with Anchor, while SimpleLink
implicitly defines a <go> task.

Anchor also allows you to take advantage of the accesskey attribute, for those browsers
that support it. For browsers that don’t support it, accesskey isn’t rendered.

Example

Card myCard = new Card(…);
...
Task myTask = new Task(“go”,”songlist.asp”,”get”);

myTask.addPostfield(“wholesite”,”$(wholesite)”);

Anchor myAnchor = new Anchor(myTask, ”Songlist”);
myAnchor.setAccesskey(myCard.getAccessKey()); //unique accesskey provided by Card
...
myCard.addElement(myAnchor);
...

Methods

Method Description

Anchor(AbsTask absTask, String text) Creates an instance of the Anchor
object in which:

absTask is the task to be executed
(such as go, prev, noop, or refresh).

text is the text the device displays to
represent the link to the URL.

void setAccesskey(String accesskey)
void setAccesskey(int accesskey)

Direct counterpart of the Openwave
extension accesskey attribute. This
method maps a single numeric key to
the link represented by this object. The
parameter must be an integer or an
integer passed as a string.

void setText(String text) Sets the text that the device displays to
represent the link. This method
overwrites the text specified in the
constructor.
2 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Anchor 1
void setTitle(String title) Direct counterpart of the WML title
attribute. This method sets the label that
identifies the link. If you do not specify
the title attribute, the device uses the
word Link as the default label. Devices
use this attribute in a variety of ways.
For example, they may use it to display
a tool tip or to issue a voice prompt
when the user selects the link. The
Openwave text-based browser uses the
title as the ACCEPT key label when the
user selects the link. To ensure
compatibility on a wide range of
devices, the title should be five
characters, or fewer.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 3

Object Model Reference
Appendix1
Appendix
Appendix is used with a ComboMenu object. It encapsulates any text or input field that
you want to append to a menu, for display on text-based browsers.

For more information, see “ComboMenu” on page 24.

Methods

Method Description

Appendix(String shortTitle) Creates an instance of the Appendix
object where shortTitle becomes the
menu item on text-based browsers.

Appendix(String id, String shortTitle) Creates an instance of the Appendix
object in which:

id is the identifier for the appendix
card

shortTitle is the title of the appendix
card, which also becomes the last menu
item of the ComboMenu object
4 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
BodyPager 1
BodyPager
The BodyPager object does not represent any common WML constructs directly. It is a
completely new object, designed to help you fully exploit the capabilities of each class of
device. You can use BodyPager to split large amounts of text into ordered lists of
“chunks,” which are grouped together to form a page.

There are two ways to use BodyPager:

• Have BodyPager split the text into sensible chunks for you

• Specify the chunks and the number of chunks to display per page yourself
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 5

Object Model Reference
BodyPager1
Example

This example demonstrates the use of BodyPager to sensibly split a long document into
separate chunks, using the autoSplitWML method.

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

DeviceContext dc = new DeviceContext(request, response);

String strLongText = new String();
// Build a long text.
strLongText = "Helena-Montana -Weather forecasters predicted "+

"more triple-digit temperatures and lightning storms "+
"in the Western "+
"United States on Friday, conditions likely to hamper "+
"efforts to contain about 60 wildfires "+
"in 10 Western states." +
"It's still going to be hot, with scattered "+
"thunderstorms that won't produce much rain,"+
"said CNN meteorologist Dave Hennen, "+
"who predicted similar conditions continuing through the "+
"weekend.
"+
"About 700,000 acres are burning throughout the West, "+
"forcing hundreds of evacuations. "+
"About half the scorched acreage is in Idaho, mostly in " +
"national forests away from population centers." +
"We were warned by weather forecasters that this "+
"was going to happen this year, said "+
"National Fire Information Officer Bob Valen.
"+
"But Friday also brought good news about a recently "+
"devastating wildfire that threatened ancient "+
"Indian ruins in a U.S. national park. " +
"Mesa Verde National Park was reopening " +
"Friday after firefighter contained a fire that "+
"eventually scorched more than 22,950 acres and "+
"came within four "+
"miles of sandstone ruins built by the Anasazi Indians "+
"hundreds of years ago.";

BodyPager myBodyPager = new BodyPager(request);
// Split the text into chunks.
myBodyPager.autoSplitWML(strLongText);

// Set the forward label to "Skip".
myBodyPager.setTextLinkForward("Skip");
// Set the exit label to "Done".
myBodyPager.setTextLinkExit("Done");
// Set the URL to go to when the user choses to exit.
myBodyPager.setURLLinkExit("http://www.openwave.com");

dc.render(myBodyPager);
}

6 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
BodyPager 1
Methods

Method Description

BodyPager(HttpServletRequest request) Creates an instance of the BodyPager
object.

void addChunk(String textChunk) Adds a chunk of text to be displayed.

void autoSplitWML(String bigText) Splits the given text into optimally sized
chunks.

void clearAll() Clears the array of text (chunks).

void setCharSet(String charSet) Specifies the character set to be used for
the WML code.

void setChunkSize(chunkSize) Sets the size (in bytes) for each chunk of
text. Default is 420 bytes.

void setChunksPerPage(chunksPerPage) Sets the number of chunks to be
displayed per page.

void setFooterCard (Card newFooterCard Sets a footer (text, input field, or image)
that appears after the contents of each
page generated by BodyPager.

void setHeaderCard (Card newHeaderCard) Sets a header (text, input field, or
image) that appears before the contents
of each page generated by BodyPager.

void setPostPercentageText(String postPercentageText) Sets the text that appears after the
percentage (for example, 50% read).

void setPrePercentageText(String prePercentageText) Sets the text that appears before the
percentage (for example, less than
50% read).

void setTextLinkExit(String textLinkExit) Sets the label for the secondary softkey
used to exit from BodyPager.

void setTextLinkForward(String text) Sets the label for the primary softkey
that is used to link to the next page.

void setTitle(String title) Sets the card title.

void setURLLinkExit(String URLLinkExit) Sets the URL to open when the user
exits BodyPager.

void showPercentage() Set a flag (true or false) to show the
percentage of text displayed. Default is
false; the percentage is not displayed.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 7

Object Model Reference
Button1
Button
You can use Buttons for navigation, although you should use them as little as possible. The
alternative is to use menus and card paths. However, you need to implement a Button
object to create buttons for the graphical Mobile Browser that acts independently of all
other navigation patterns. You can also present button as an image.

Text-based browsers render the button as a link. The same is true for the graphical Mobile
Browser when the extensions cannot be used.

NOTE OUI renders the primary path as a button on graphical Mobile Browsers in cards
that contain a user interface widget. A single secondary path is also rendered as a button.

Example

Button myButton = newButton(“www.openwave.com”, “OPWV”);
myCard.addElement(myButton);

Methods

Method Description

Button(String buttonURL, String label) Creates an instance of the Button
object in which:

buttonURL is the URL to open when
the button is chosen.

label is the text on the button (on a
graphical Mobile Browser) or
representing the link (on a text-based
browser).

void setButtonURL(String buttonURL) Sets the URL to open when the button is
chosen.

void setLabel(String label) Sets the label for the button. This
method overwrites the label set in the
constructor.

void setUPGUIPic(String UPGUIPic) Sets the image shown on the button
instead of the label (for the graphical
Mobile Browser only).
8 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Caller 1
Caller
You can use the Caller object to write applications that make it possible for users to call
a phone number that’s included in a card, or to provide information about that number if
the device doesn’t support this feature.

Some handsets support the mc (make call) Wireless Telephony Applications Interface
(WTAI) function, which allows users to initiate a telephone call from a list of contacts, an
order form, or a phone number query. Not all browsers support the mc function. The
graphical Openwave Mobile Browser supports it, the Nokia browser does not. The WML
code for WTAI calls is:

<go href="wtai://wp/mc;00455551212"/>

The main problem with the mc function is trying to write applications for handsets that do
not support WTAI. One solution is to create an extra card that contains information about
which telephone number the user should dial. This is a poor solution compared to one-
click phone calls, but it is the best option available to handsets without WTAI.

The Caller object comes in two flavors. With the first you can define some of the text
that tells users what they are supposed to do. In this case, OUI builds an extra card behind
the scenes and no further action is required from you.

Deck myDeck = new Deck();
...

Caller myCaller = new Caller(myDeck, “004555551212”, ”Call
004555551212”);

You need to pass the Deck object because the Caller object automatically creates a card
for you. Passing the Deck object ensures that there is a place where OUI can place the
card.

With the second flavor of the Caller object you have more control, but also more
responsibility. You can use it to define the URL of a card or a deck to which non-WTAI
handsets are directed. In this case, you must make sure that such a card or deck exists.
However, because you are creating a fully fledged card, you can make it look exactly the
way you want.

Caller myCaller = new Caller(“004555551212”, ”#call”);
...
Card myCard = new Card(“call”,”Luca”,”Luca’s number”)

myCard.addText(“Luca’s number: 004555551212”);

The Caller object is an abstract task that can be used wherever a task can be used, such
as inside a doElement or an Anchor, or associated to the different path activities of a
card.

On the Openwave Mobile Browser, activating the link automatically initiates a telephone
call to the specified number.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 9

Object Model Reference
Caller1
On the Nokia browser, the link needs to be to a new card that contains the number. Nokia
users can use the Use Number feature of their phones.

Methods

Method Description

Caller(Deck deck, String callNumber, String callText) Implicit mode: An additional card is
added to the deck parameter for
browsers that do not support WTAI.

Creates an instance of the Caller
object in which:

deck is the deck where the task
belongs.

callNumber is the number to call.

callText is the description of the
number used by browsers that do not
support WTAI.

Caller(String callNumber, String callURL) Explicit mode: You must create and add
a card to the deck for browsers that do
not support WTAI.

Creates an instance of the Caller
object in which:

callNumber is the number to call for
browsers that support WTAI.

callURL is the URL for the customized
card for browsers that do not support
WTAI.

void setNumber(String callNumber) Sets the number to call. This method
overrides the call number specified in
the constructor.

void setURL(String callURL) Sets the URL for the customized card
for browsers that do not support WTAI.
10 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Card 1
Card
The Card object is a direct counterpart of the WML <card> element. However, the Card
object offers additional features that optimize usability across browsers and devices.

The Card object includes both standard methods and rendering directives, methods that
dictate how a particular attribute or function should be rendered for a device.

Card Tit le

Some devices to not render the title attribute. The Card object resolves this problem by
providing a method to enforce the card title on all devices. If the device does not support
the title attribute, the title is presented as the first line of text on the card. This enhances
the usability of your application by describing context-sensitive information in a page.

Navigation

There are three kinds of navigation: primary, secondary, and side paths. Primary paths are
activities that 80% or more of users are likely to perform. Secondary paths are activities
that many users (but not the majority) perform often. Side paths are activities that 80% of
users will use 20% of the time when they use your application.

The Card object makes navigation as intuitive as possible. By using methods to add
primary, secondary, and side paths, this object abstracts how navigation can be optimally
implemented across different devices. For phones with Openwave browsers, optimal
usability is achieved through softkeys, while phones from other vendors are better served
with links.

If you prefer, you can also use the Card object to force all navigation with links.

Redefining the <prev> Task

You can use the Card object to redefine the <prev> task by using the
enforceLogicalBack method. This is useful for devices that do not redefine the
<prev> task correctly. This method simply creates an event that is triggered when the
user navigates to the card in a backward direction. The user is then redirected to a specific
card or URL. The redefinition of the <prev> task enhances usability for Nokia browsers
and maintains good usability on Openwave browsers.

Enhancing the GUI

A widget is an element of a graphical user interface (GUI) that displays information or
provides a specific way for the user to interact with an application. Widgets include the
Button, Check, Input, Picker, Popup, and Radio objects.

If there is a widget in a card, the Card object optimizes the user interface on graphical
Mobile Browsers by rendering the primary path as a button.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 11

Object Model Reference
Card1
Methods

Method Description

Card(String id, String shortTitle) Creates an instance of a card in which:

id is the identifier for the card

shortTitle is the title of the card.
This is a direct counterpart of the WML
title attribute.

void addDoelement(DoElement doElement) Direct counterpart of the WML <do>
element. This method adds a task
associated with an element in the user
interface.

void addElement(WaomElement object) Appends an existing object to the flow
of the card. Not all objects are legal;
only such objects as menus, links, user
interface widgets, and so on are legal.
The DoElement, Timer, and Onevent
objects have their own methods.

void addOnevent(Onevent, onevent) Direct counterpart of the WML
<onevent> element. This method
adds an event to the card.

void addSecondaryPath(String URL, String shortName) Adds another URL to be used as
secondary navigation for the card. This
is rendered as the URL for the
secondary softkey on Openwave
browsers and as a succeeding link on
Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary URLs
to go to. This is the short form for
defining a secondary path activity. It
assumes that a URL is all that you need
to move on. If you need to pass values to
the server by means of postfields, you
must use addSecondaryPathTask.
12 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Card 1
void addSecondaryPath(String URL, String shortName,
String longName)

Adds another URL to be used as
secondary navigation for the card. This
is rendered as the URL for the
secondary softkey on Openwave
browsers and as a succeeding link on
Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName and longName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

longName is the long label for the
URL.

When both shortName and longName
are specified, Openwave browsers use
the shortName as the label for the
softkey while Nokia browsers use the
longName as the label for the link.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary URLs
to go to.

This is the short form for defining a
secondary path activity. It assumes that
a URL is all that you need to move on.
If you need to pass along some values to
the server by means of postfields, you
must use addSecondaryPathTask.

void addSecondaryPathTask(AbsTask absTask, String
shortName)

Adds a secondary task to the card (see
“Task” on page 75). This is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user selects the secondary
softkey.

shortName is the short label for the
task.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary tasks to
execute.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 13

Object Model Reference
Card1
void addSecondaryPathTask(AbsTask absTask, String
shortName, String longName)

Adds a secondary task to the card (see
“Task” on page 75). This is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user selects the secondary
softkey.

shortName is the short label for the
task.

longName is the long label for the task.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary tasks to
execute.

void addSidePath(String URL, String shortName) Adds another URL to be used as
secondary navigation for the card.
However, this method causes navigation
to be supported in the Options menu on
Nokia browsers and through softkeys on
Openwave browsers. The parameters
are:

URL is the URL to open when the user
chooses the option identified by
shortName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

You can have more than one side path
on a card. In this case, the user chooses
which of the side paths to go to. This is
the short form for defining side path
activity. It assumes that a URL is all that
you need to move on. If you need to
pass values to the server by means of
postfields, you must use
addSidePathTask.

Method Description
14 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Card 1
void addSidePath(String URL, String shortName, String
longName)

Adds another URL to be used as
secondary navigation for the card.
However, this method causes navigation
to be supported in the Options menu on
Nokia browsers and through softkeys on
Openwave browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

You can have more than one side path
on a card. In this case, the user chooses
which of the side paths to go to. This is
the short form for defining a side path
activity. It assumes that a URL is all that
you need to move on. If you need to
pass along some values to the server by
means of postfields, you must use
addSidePathTask.

void addSidePathTask(AbsTask absTask, String
shortName)

Adds a side task to the card (see “Task”
on page 75). However, this method
causes navigation to be supported in the
Options menu on Nokia browsers and
through softkeys on Openwave
browsers.

The parameters are:

absTask is the task to be executed as
identified by shortName.

shortName is the short label for the
task; this is the direct counterpart of the
WML label attribute.

You can have more than one side path
on a card. In this case, the user chooses
which of the secondary tasks to execute.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 15

Object Model Reference
Card1
void addSidePathTask(AbsTask absTask, String
shortName, String longName)

Adds a side task to the card (see “Task”
on page 75). However, this method
causes navigation to be supported in the
Options menu on Nokia browsers and
through softkeys on Openwave
browsers.

The parameters are:

absTask is the task to be executed as
identified by shortName and longName.

shortName is the short label for the
task.

longName is the long label for the task.

You can have more than one side path
on a card. In this case, the user chooses
which of the secondary tasks to execute.

void addText(String text) Adds the text to be displayed.

void beginParagraph() Sets the start of a paragraph. You must
use beginParagraph at the beginning
of each card. You can use it several
times inside a card, but if you do you
must close the previous paragraph
explicitly with endParagraph.

void beginParagraph(int align, int wrap) Sets the start of a paragraph in which:

align is 0 to left align the text, 1 to
center the text, 2 to right align the text

wrap is 0 to not wrap the text (nowrap)
and 1 to wrap the text to the next line of
the display (wrap).

You must use beginParagraph at the
beginning of each card. You can use it
several times inside a card, but if you do
you must close the previous paragraph
explicitly with endParagraph.

void beginParagraph(String align, String mode) Sets the start of a paragraph in which:

align is the alignment of the text:
left, center, or right

mode is the wrap or nowrap, to wrap
the text to the next line of the display or
not.

You must use beginParagraph at the
beginning of each card. You can use it
several times inside a card, but if you do
you must close the previous paragraph
explicitly with endParagraph.

Method Description
16 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Card 1
void endParagraph() Sets the end of a paragraph. You must
use endParagraph at least once at the
end of each card.

int getAccesskey() Returns a unique sequential number,
useful for appending anchors or simple
links to the flow of a card and for
generating incremental values for the
accesskey attribute.

String getID() Returns the ID of the card.

void setId(String id) Sets the ID of the card.

void setNewContext(boolean newcontext) Direct counterpart of the WML
newcontext attribute. This method
sets whether or not to define a new
context.

void setOnenterbackward(String onenterbackwardURL) Direct counterpart of the WML
onenterbackward attribute for the
<card> element. This method sets the
URL to open when the user navigates to
the card in a backward direction.

void setOnenterforward(String onenterforwardURL) Direct counterpart of the WML
onenterforward attribute. This
method sets the URL to open when the
user navigates to the card in a forward
direction.

void setOntimer(String ontimerURL) Direct counterpart of the WML
ontimer attribute. This method sets the
URL to open when the timer expires.

void setOrdered(boolean ordered) Direct counterpart of the WML
ordered attribute for the <card>
element. This method sets the ordered
attribute to either true or false.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 17

Object Model Reference
Card1
void setPrimaryPath(String URL, String shortName) Sets the URL to use for the primary
navigation of the card. Rendered as the
URL for the primary softkey on
Openwave browsers and as the first link
on Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the primary softkey (or the first
link for Nokia browsers).

shortName is the label for the URL.

You can have only one primary path on
a card. This is the short form for
defining a main path activity. It assumes
that a URL is all that you need to move
on. If you need to pass values to the
server by means of postfields, you must
use setPrimaryPathTask.

void setPrimaryPath(String URL, String shortName,
String longName)

Sets the URL to use for the primary
navigation of the card. Rendered as the
URL for the primary softkey on
Openwave browsers and as the first link
on Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the primary softkey (or the first
link for Nokia browsers).

shortName is the short label for the
URL.

longName is the long label for the URL

You can have only one primary path on
a card. This is the short form for
defining a main path activity. It assumes
that a URL is all that you need to move
on. If you need to pass values to the
server by means of postfields, you must
use setPrimaryPathTask.

Method Description
18 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Card 1
void setPrimaryPathTask(AbsTask absTask, String
shortName)

Sets the primary task of the card (see
“Task” on page 75). Rendered
differently on Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the label for the task.

You can have only one primary path on
a card.

void setPrimaryPathTask(AbsTask absTask, String
shortName, String longName)

Sets the primary task of the card (see
“Task” on page 75). Rendered
differently on Openwave and Nokia
browsers, depending on the type of the
task.

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the short label for the
task.

longName is the long label for the task.

You can have only one primary path on
a card.

void setTitle(String title) Direct counterpart of the WML title
attribute. This method sets the title of
the card.

void setTaskMenu(TaskMenu taskMenu) Adds a TaskMenu object to the card.

void setTimer(Timer timer) Adds a Timer object to the card.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 19

Object Model Reference
Card1
Rendering Directives

Method Description

void enforceLogicalBack(String BackURL) Sets the URL to open when the user
navigates to the card in a backward
direction. This is useful for devices that
don’t properly redefine <prev />. This
renders as an event of
type=”onenterbackward”.

void enforceNavigationWithLinks () Ensures that primary and secondary
paths are rendered as hyperlinks,
regardless of the device family.

void enforceTitle() For devices that don’t support the
title attribute for cards, inserts the
title of the card as the first line of text in
the card.

void setEnforceTitle(boolean enforceTitle) Sets whether to enforce display of card
titles for devices that don’t support the
title attribute.
20 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Check 1
Check
You can use the Check object to create checkboxes on graphical browsers. On text-based
browsers checkboxes are rendered as multiple-selection lists.

Example

Check objects are rendered differently on different browsers:

Check myCheck = new Check("alarm");
myCheck.addEntry("on1", "Alarm");
myCheck.addEntry("on2", "Trumpet");
myCheck.addEntry("on3", "Gorilla");
myCheck.setIvalue("1;2");

On graphical browsers:

On text-based Openwave browsers:

On Nokia browsers:
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 21

Object Model Reference
Check1
Methods

Method Description

Check(String name) Creates an instance of the Check object
in which name is the identifier for the
object. The name variable is the direct
counterpart of the WML name attribute
for the <select> element.

void addEntry(String key, String value) Adds an entry to the list of options in
which:

key is the value to be contained in the
name variable when the user chooses
from the list of options.

value is the text describing the option.

If the user selects multiple options, the
keys are concatenated by semicolons
(;).

void addEntry(String key, String value, String
onpick)

Adds an entry to the list of options in
which:

key is the value contained in the name
variable when the user chooses from the
list of options

value is the text describing the option

onpick is the URL to open when the
entry is selected.

String getIname() Returns the name of the WML variable
that contains the index value of the
option the user selects.

String getIvalue Returns the index of the default value or
values.

String getMultiple() Returns true if the user can make
multiple selections; otherwise returns
false.

String getName() Returns the name of the WML variable
that contains the index value of the
option the user selects.

String getValue() Returns the default value or values of
the user selection.

String isMultiple() Returns true if the user can make
multiple selections; otherwise returns
false.
22 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Check 1
void setIname(String iname) Direct counterpart of the WML iname
attribute. This method sets the name of
the variable that contains the index
value of the option selected. The index
value associated with each option
comes from its position in the
<select> list, starting with 1. If the
user has not selected an option, the
index value either is 0 or the ivalue.

void setIvalue(String ivalue) Direct counterpart of the WML ivalue
attribute. This method sets the default
selection in the list of options by
specifying the index (1, 2, and so on) of
the default selection.

void setMultiple(String multiple) Direct counterpart of the WML
multiple attribute. This method sets
whether multiple selections can be
made. This method accepts true or
false.

void setMultiple(boolean multiple) Direct counterpart of the WML
multiple attribute. This method sets
whether multiple selections can be
made. This method accepts true or
false.

void setName(String name) Sets the name of the WML variable to
contain the value of the option or
options the user selects.

void setValue(String value) Direct counterpart of the WML value
attribute. This method sets the default
selection in the list of options by
specifying the value associated with the
default selection.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 23

Object Model Reference
ComboMenu1
ComboMenu
You can use a ComboMenu object to append a user interface object to a menu. The
appended object is displayed at the end of the menu on the graphical Openwave Mobile
Browser, and is implemented as an additional menu item linked to another card on text-
based browsers.

For example, you may want to present the user with an advertisement or a search input
field at the end of a menu.

If you don’t use ComboMenu, the appended object is lost.

The ComboMenu object consists of the Menu and the Appendix objects. (For more
information, see “Appendix” on page 4 and “Menu” on page 53.)

NOTE Because of the nature of elective forms, on Nokia browsers the ComboMenu
object can be rendered in one card.

Text-Based Browser Graphical Mobile Browser
24 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
ComboMenu 1
Example

Deck myDeck = new Deck();
Menu myMenu = new Menu();
...
Appendix myAppendix = new Appendix(“Other Info”);
...
ComboMenu myCombo = new ComboMenu(myDeck, myMenu, myAppendix)

Methods

Method Description

ComboMenu(Deck deck, Menu menu, Appendix appendix) Constructor: Creates an instance of the
ComboMenu object.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 25

Object Model Reference
Deck1
Deck
The Deck object is a high-level object that is useful as a container of multiple templates
and cards.

Plain WML and WML with Openwave extensions have different Document Type
Definitions (DTDs). Encapsulating a deck into an object ensures that the most appropriate
DTD is delivered to the browser.

Example

myDeck = new Deck()

Methods

Method Description

Deck() Creates an instance of the Deck object.

void addCard(AbsCard absCard) Adds a card to the deck. This is the
direct counterpart of the WML <card>
element.

void addHead(Head head) Adds a Head object to the deck.

void addTemplate(Template template) Adds a Template object to the deck.

void disableNokiaBackNavigation() Disables defining <prev/> tasks in the
deck template for Nokia browsers.

void setCharSet(String charset) Specifies the character set to be used for
the deck.
26 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
DeviceContext 1
DeviceContext
The DeviceContext object does not represent a WML construct. It encapsulates the
HTTP REQUEST headers generated by the browser and often modified by the gateway, and
makes that contextual information available to your applications. The headers include
information about the device, the browser, the gateway, and related information.

The DeviceContext object accepts instructions, actively ensures that everything
functions correctly, and provides you with the information that you need to make
decisions.

NOTE The object model is completely independent of the DeviceContext object that
does the rendering, so OUI can be implemented in any Java environment. If you need OUI
to render an object model for a particular family of devices outside of the servlet
framework, you can create a DeviceContext object based on a family name. The five
family names are UPText, UPGUI, Nokia, Generic, and MSIE5.

Example

DeviceContext dc = new DeviceContext(request, response);

Deck myDeck = new Deck();
...

dc.disableExtensions();
...

dc.render(myDeck);

Methods

Method Description

DeviceContext(HttpServletRequest request,
HttpServletResponse Response)

Creates an instance of the
DeviceContext object in which:

request is an HTTP request; it
contains the URL of the document
being requested and all information
about the client such as browser type, IP
address, MIME type, and so on.

response is an HTTP response; it
encapsulates the data being sent back to
the client.

This method also identifies the WAP
gateway, the handset and device, and the
device model that requests the URL,
and determines the rendering strategy
based on the information from the
HTTP request.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 27

Object Model Reference
DeviceContext1
DeviceContext(String ctxName) Creates an instance of the
DeviceContext object in which:

ctxName identifies a particular handset
context that you want to create.

This method also determines the
rendering strategy based on the context
that you specified.

void disableContentType() OUI automatically produces the correct
MIME type for the markup it produces
(WML and HTML). If you are an
experienced developer, you may want to
apply your own HTTP header
manipulation, making sure that OUI
does not interfere. You can use this
method to disable automatic MIME
type generation.

void disableExtensions() OUI always tries to use extensions
when rendering for the Openwave
Mobile Browser. This method forces
OUI to gracefully degrade the
application to a version that does not
deploy extensions.

String getAgentFamilyName() Returns the browser family of the
device: Openwave text-based,
Openwave graphical, Nokia, MSIE, or
Generic.

String getAgentSubFamilyName() Returns the browser subfamily of the
device: Openwave text-based, Alcatel,
Openwave graphical, Nokia 9110,
MSIE, or Generic.

String getGatewayVendor() Returns the vendor of the WAP gateway
used by the device.

String getGatewayVersion() Returns the version of the WAP
gateway used by the device.

HandsetContext getHandsetContext() Returns the handset context of the
device, describing the agent family and
agent subfamily as well as the specific
rendering strategy for the device.

String getProxyVendor() Returns the vendor of the WAP gateway
used by the device.

String getProxyVersion() Returns the version of the WAP
gateway used by the device.

int getSize(WaomElement rootElement) Returns the length of the generated
(string) static WML rendered from the
given rootElement.

Method Description
28 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
DeviceContext 1
String getUserAgentString() Returns the browser used by the device
(also known as the user agent).

int getVersionNumber() Returns the version number of the
device model as an integer.

String getVersionString() Returns the version number of the
device model as a string.

boolean isMAG() Returns true if the HTTP request
passed through an Openwave Mobile
Access Gateway (formerly called an
UP.Link Server); otherwise returns
false.

boolean isUpLink() Returns true if the HTTP request
passed through an Openwave Mobile
Access Gateway, (formerly called an
UP.Link Server); otherwise returns
false.

void optimizeForSpeed() Sets a flag to indicate that validation
should be bypassed when rendering the
static WML.

void render() Generates the browser-specific HTML
or WML code from the root element of
the object. The result is sent back to the
browser/device through an HTTP
response.

void render(WaomElement rootElement) Generates the browser-specific HTML
or WML code from the given object.
The result is sent back to the device
through an HTTP response.

String renderToString(WaomElement rootElement) Generates the browser-specific WML
code from the given object. However,
the static WML code is not sent back
through an HTTP response. Instead, it is
returned as a string.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 29

Object Model Reference
DoElement1
DoElement
The DoElement object represents WML <do> elements. This object is mainly used in
templates.

DoElement objects can be attached to cards, but this is not the recommended way to use
them. DoElements objects implement navigational elements effectivelyon some
browsers, such as the Openwave Mobile Browser, but they have a secondary role on
others, such as the Nokia browser.

For this reason, you should use the addPrimaryPath, addSecondaryPath, and
addSidePath Card object methods (and their relatives, as described in “Card” on
page 11), rather than using DoElement objects directly. Those methods maintain the best
usability, regardless of the browser.

You should not use DoElement objects for primary activities (type=”accept”), but only
to provide common softkey mappings, such as Help, Info, and Menu.

Example

Template myTemplate = new Template();

Task myTask = new Task(“go”, ”main”)

DoElement myDoElement = new DoElement(myTask, “options”, ”main”);

myTemplate.addDoElement(myDoElement);

Methods

Method Description

DoElement(AbsTask absTask, String type) Creates an instance of the DoElement
in which:

absTask is the task to be performed
when the <do> element has been
activated.

type specifies a hint to the browser
about the author’s intended use of the
element (such as accept, prev, help,
reset, options, or delete). This is a
direct counterpart of the WML type
attribute.
30 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
DoElement 1
DoElement(AbsTask absTask, String type, String label) Creates an instance of the DoElement
in which:

absTask is the task to be performed
when the <do> element has been
activated .

type specifies a hint to the browser
about the author’s intended use of the
element (such as accept, prev, help,
reset, options, or delete). This is a
direct counterpart of the WML type
attribute.

label specifies the text for
dynamically labeling the task. To ensure
compatibility on a wide range of
devices, label should be a maximum
of five characters. This is a direct
counterpart of the WML label
attribute.

DoElement(AbsTask absTask, String type, String label,
String name)

Creates an instance of the DoElement
in which:

absTask is the task to be performed
when the <do> element has been
activated.

type specifies a hint to the browser
about the author’s intended use of the
element (such as accept, prev, help,
reset, options, or delete). This is a
direct counterpart of the WML type
attribute.

label specifies the text for
dynamically labeling the task. To ensure
compatibility on a wide range of
devices, label should be a maximum
of five characters. This is a direct
counterpart of the WML label
attribute.

name specifies a name for the element.
This is a direct counterpart of the WML
name attribute.

void setLabel(String label) Direct counterpart of the WML label
attribute. This method specifies a
textual string for labeling a user
interface component. To ensure
compatibility on a wide range of
devices, label should be a maximum
of five characters.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 31

Object Model Reference
DoElement1
void setName(String name) Direct counterpart of the WML name
attribute. This method specifies a name
for the DoElement object.

void setOptional(boolean optional) Direct counterpart of the WML
optional attribute. If true is passed
to this method, the browser can ignore
the <do> element. By default, the
browser does not ignore the <do>
element.

void setType(String type) Direct counterpart of the WML type
attribute. This method provides a hint to
the browser about the author's intended
use of the element (such as accept,
prev, help, reset, options, or
delete).

The most commonly used type values
are accept (a task mapped to the
primary softkey) and options
(mapped to the secondary softkey).
Openwave browser software does not
currently support the delete, help,
and prev type values.

Method Description
32 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Form 1
Form
The Form object is very similar to the Card object. However, the Form object relies on the
OUI rendering strategy for optimal usability on current and future browsers.

The Form object allows you to focus on what information is needed from the user and not
on the syntax of how to build the form. For example, you can rely on OUI to automatically
generate paragraph tags when you add a text or an input field to the form.

By providing both Card and Form objects, OUI strikes a balance between flexibility in
developing applications and support for future devices.

If your application requires users to enter a substantial amount of entry, it’s better to use
the Form object.

The Form object includes both standard methods and rendering directives, methods that
dictate how a particular attribute or function should be rendered for a device.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 33

Object Model Reference
Form1
Methods

Method Description

Form(String id, String shortTitle) Creates an instance of a Form in which:

id is the identifier for the card.

shortTitle is the title of the card.
This is a direct counterpart of the WML
title attribute.

void addElement(WaomElement element) Appends a OUI object to the flow of the
card.

void addSecondaryPath(String URL, String shortName) Adds another URL to be used as
secondary navigation for the card. This
is rendered as the URL for the
secondary softkey on Openwave
browsers and as a succeeding link on
Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary URLs
to go to. This is the short form for
defining a secondary path activity. It
assumes that a URL is all that you need
to move on. If you need to pass along
some values to the server by means of
postfields, you must use
addSecondaryPathTask.
34 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Form 1
void addSecondaryPath(String URL, String shortName,
String longName)

Adds another URL to be used as
secondary navigation for the card. This
is rendered as the URL for the
secondary softkey on Openwave
browsers and as a succeeding link on
Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName and longName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

longName is the long label for the
URL.

When both shortName and longName
are specified, Openwave browsers use
the shortName as the label for the
softkey and Nokia browsers use the
longName as label for the link. You can
have more than one secondary path on a
card. In this case, the user chooses
which of the secondary URLs to go to.

This is the short form for defining a
secondary path activity. It assumes that
a URL is all that you need to move on.
If you need to pass values to the server
by means of postfields, you must use
addSecondaryPathTask.

void addSecondaryPathTask(AbsTask absTask, String
shortName)

Adds a secondary task to the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the label for the task.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary tasks to
execute.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 35

Object Model Reference
Form1
void addSecondaryPathTask(AbsTask absTask, String
shortName, String longName)

Adds a secondary task to the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the label for the task.

longName is the long label for the task.

You can have more than one secondary
path on a card. In this case, the user
chooses which of the secondary tasks to
execute.

void addSidePath(String URL, String shortName) Adds another URL to be used as
secondary navigation for the card.
However, this method causes navigation
to be supported in the Options menu on
Nokia browsers and through softkeys on
Openwave browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

You can have more than one side path
on a card. In this case, the user chooses
which of the side paths to go to. This is
the short form for defining a secondary
path activity. It assumes that a URL is
all that you need to move on. If you
need to pass along some values to the
server by means of postfields, you must
use addSidePathTask.

Method Description
36 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Form 1
void addSidePath(String URL, String shortName, String
longName)

Adds another URL to be used as
secondary navigation for the card.
However, this method causes navigation
to be supported in the Options menu on
Nokia browsers, and through softkeys
on Openwave browsers.

The parameters are:

URL is the URL to open when the user
chooses the option identified by
shortName and longName.

shortName is the short label for the
URL; this is the direct counterpart of the
WML label attribute.

longName is the long label for the
URL.

When both shortName and longName
are specified, Openwave browsers use
the shortName as the label for the
softkey and Nokia browsers use the
longName as the label for the link.

You can have more than one side path
on a card. In this case, the user chooses
which of the side paths to go to. This is
the short form for defining a secondary
path activity. It assumes that a URL is
all that you need to move on. If you
need to pass along some values to the
server by means of post fields, you must
use addSidePathTask.

void addSidePathTask(AbsTask absTask, String
shortName)

Adds a secondary task to the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the label for the task.

You can have more than one side path
on a card. In this case, the user chooses
which of the secondary tasks to execute.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 37

Object Model Reference
Form1
void addSidePathTask(AbsTask absTask, String
shortName, String longName)

Adds a secondary task to the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the short label for the
task.

longName is the long label for the task.

You can have more than one side path
on a card. In this case, the user chooses
which of the secondary tasks to execute.

void addText(String text) Adds the text to be displayed on the
card.

void beginParagraph() Sets the start of a paragraph.

void beginParagraph(int align, int wrap) Sets the start of a paragraph in which:

align is 0 to left align the text, 1 to
center the text, 2 to right align the text.

wrap is 0 to not wrap the text (nowrap)
and 1 to wrap the text to the next line of
the display (wrap).

void beginParagraph(String align, String mode) Sets the start of a paragraph in which:

align is the alignment of the text,
left, center, or right

mode is wrap or nowrap, to wrap the
text to the next line of the display or not.

void endParagraph() Sets the end of a paragraph.

int getAccsskey() Returns a unique sequential number,
useful for appending anchors or simple
links to the flow of a card and for
generating incremental values for the
accesskey attribute.

void setID(String id) Sets the ID for the card.

This method is the direct counterpart of
the WML id attribute.

void setNewContext(boolean newcontext) Sets whether or not to define a new
context.

This is a direct counterpart of the WML
newcontext attribute.

Method Description
38 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Form 1
void setOnenterbackward(String onenterbackwardURL) Sets the URL to open when the user
navigates to the card in a backward
direction.

This is a direct counterpart of the WML
onenterbackward attribute for the
<card> element.

void setOnenterforward(String onenterforwardURL) Sets the URL to open when the user
navigates to the card in a forward
direction.

This is a direct counterpart of the WML
onenterforward attribute for the
<card> element.

void setOntimer(String ontimerURL) Sets the URL to open when the timer
expires.

This is a direct counterpart of the WML
ontimer attribute for the <card>
element.

void setOrdered(boolean ordered) Sets the ordered attribute to either
true or false.

This is the direct counterpart of the
WML ordered attribute for the
<card> element.

void setPrimaryPath(String URL, String shortName) Sets the URL to be used for the primary
navigation of the card. This is rendered
as the URL for the primary softkey on
Openwave browsers and as the first link
on Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the primary softkey (or the first
link for Nokia browsers).

shortName is the label for the URL

You can have only one primary path on
a card. This is the short form for
defining a main path activity. It assumes
that a URL is all that you need to move
on. If you need to pass values to the
server by means of postfields, you must
use setPrimaryPathTask.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 39

Object Model Reference
Form1
void setPrimaryPath(String URL, String shortName,
String longName)

Sets the URL to be used for the primary
navigation of the card. This is rendered
as the URL for the primary softkey on
Openwave browsers and as the first link
on Nokia browsers.

The parameters are:

URL is the URL to open when the user
chooses the primary softkey (or the first
link for Nokia browsers).

shortName is the label for the URL

longName is the long label for the
URL.

You can have only one primary path on
a card. This is the short form for
defining a main path activity. It assumes
that a URL is all that you need to move
on. If you need to pass values to the
server by means of postfields, you must
use setPrimaryPathTask.

void setPrimaryPathTask(AbsTask absTask, String
shortName)

Sets the primary task of the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the label for the task.

You can have only one primary path on
a card.

void setPrimaryPathTask(AbsTask absTask, String
shortName, String longName)

Sets the primary task of the card (see
“Task” on page 75). It is rendered
differently for Openwave and Nokia
browsers, depending on the type of the
task.

The parameters are:

absTask is the task to be performed
when the user chooses the primary
softkey.

shortName is the short label for the
task.

longName is the long label for the task.

You can have only one primary path on
a card.

Method Description
40 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Form 1
Rendering Directives

void setTaskMenu(TaskMenu taskMenu) Adds a TaskMenu object to the card
(see “TaskMenu” on page 77).

void setTitle(String title) Sets the title of the card.

Method Description

void enforceLogicalBack(String BackURL) Sets the URL to open when the user
navigates to the card in a backward
direction. This is useful for devices that
don’t properly redefine <prev />. This
renders as an event of
type=”onenterbackward”.

void enforceNavigationWithLinks () Ensures that primary and secondary
paths are rendered as hyperlinks,
regardless of the device family.

void enforceTitle() For devices that don’t support the
title attribute for cards, inserts the
title of the card as the first line of text in
the card.

void setEnforceTitle(boolean enforceTitle) Sets whether to enforce display of card
titles for devices that don’t support the
title attribute.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 41

Object Model Reference
Head1
Head
The WML <head> element specifies information about the deck as a whole, including
metadata and access control tags.

The Head object is a direct counterpart of the WML <head> element. This object is used
to exploit advanced functionality of the Openwave platform, such as prefetch, bookmark
control, and deck caching (time to live), without breaking the code for other browsers.

IMPORTANT Some of this functionality works only for the Openwave Mobile Browser
when it connects via an Openwave Mobile Access Gateway, (formerly called the UP.Link
Server). Some of the functionality works with the Openwave Mobile Browser regardless of
the gateway, and some also works with Nokia phones.

Example

Head myHead = new Head();

myHead.setAccessInfo(“stockexchange.com”,”customers/”);

myHead.setBookmarkURL(“http://wap.stockexchange.com/customer/Luca?quote=” + quote);

//cache control
myHead.disableCaching();

//TTL
myHead.setTTL(3600);

//mobile originated prefetch
myHead.setPrefetchURL(“http://wap.stockexchange.com/customer/Luca?id=321”)
myHead.setPrefetchURL(“http://wap.stockexchange.com/customer/Luca?id=341”)

Methods

Method Description

Head() Creates an instance of the Head object.

void addAccessInfo(String domain, String path) Direct counterpart of the WML
<access> element. This method adds
access information to the current deck.
This information gives access only to
decks originating from the specified
domain and path. The domain
parameter specifies the domain of other
decks that can access cards in the
current deck. The default value is the
domain of the current deck. The path
specifies the root URL of other decks
that can access cards in the current
deck. The default value is / (the root
path of the current deck), which lets any
deck within the specified domain access
this deck.
42 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Head 1
boolean addMetaTag(String metaTag) Direct counterpart of the WML <meta>
element.

void disableCaching() Specifies that the WML deck should not
be cached or kept in memory.

ArrayList getAccessInfo() Returns the domain and URL of the
decks that have access to the deck.

String getBookmarkURL() Returns the URL to be bookmarked, if
the current deck is bookmarkable.

boolean getBookmarkable() Returns true if the current deck is
bookmarkable; otherwise returns
false.

ArrayList getMetaTags() Returns the name-value pairs specifying
the properties associated with the deck.

boolean getMustRevalidate Returns true if the Openwave browser
must revalidate the TTL; otherwise
returns false.

String getPrefetchURL() Returns the URL to be preloaded to the
cache when the deck is accessed.

int getTTL() Returns the TTL for a deck, that is, the
number of seconds that a device keeps
the deck in cache memory.

void setBookmarkURL(String bookmarkURL) Specifies the URL to be bookmarked, if
the current deck is not bookmarkable.
This feature is supported only on the
Openwave Mobile Browser connecting
via an Openwave MAG. It renders
nothing on Nokia browsers.

void setBookmarkable(boolean bookmarkable) Specifies whether or not the current
deck is bookmarkable. The current deck
is bookmarkable by default. This
feature is supported only on the
Openwave Mobile Browser connecting
via an Openwave MAG. It renders
nothing on Nokia browsers.

void setMustRevalidate(boolean mustRevalidate) When passed with a true value, this
method forces the Openwave Mobile
Browser to revalidate the deck’s TTL,
even if the user navigates to the deck in
the backward direction.

void setPrefetchURL(String prefetchURL) Sets the URL to be preloaded to the
cache when the current deck is
accessed. This method is supported
only by Openwave browsers.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 43

Object Model Reference
Head1
void setTTL(int TTL) Sets the TTL, that is, the length of time
in seconds that a device keeps the deck
in cache memory. This method accepts
a value from an integer primitive data
type.

void setTTL(Integer TTL) Sets the TTL, that is, the length of time
in seconds that a device keeps the deck
in cache memory. This method accepts
a value from an integer reference data
type.

void setTTL(String TTLStr) Sets the TTL, that is, the length of time
in seconds that a device keeps the deck
in cache memory. This method accepts
an integer value passed as a string (for
example, 360).

Method Description
44 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
HRule 1
HRule
Horizontal rules are an extension to WML. You can use them on the graphical Mobile
Browser to draw a horizontal line across the width the device display, to visually segregate
elements on a card.

Because horizontal rules break old browsers, the HRule object ensures that the horizontal
rule is rendered only on the graphical Mobile Browser.

Example

The following line of code implements the HRule object to draw a horizontal line on the
graphical Mobile Browser. The size and width attributes set the dimensions of the
horizontal line.

HRule myHR = new HRule("20", "30");
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 45

Object Model Reference
HRule1
Methods

Method Description

HRule() Creates an instance of the HRule object.

HRule(String size, String width) Creates an instance of the HRule object
in which:

size is the height in pixels of the line to
be drawn.

width is the length in pixels of the line
to be drawn.

void setSize(String size) Sets the height in pixels of the line to be
drawn. This method can accept only
integer values.

void setWidth(String width) Sets the horizontal length in pixels of
the line to be drawn. The values can be
either an absolute number of pixels or a
percentage of the screen width. If the
value of the width attribute exceeds the
dimensions of the screen, the line is
truncated at the edge of the screen.
46 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Image 1
Image
Serving compatible images to different devices can be challenging. For example,
Openwave graphical browsers support the PNG format, while Nokia browsers do not.

The Image object encapsulates the WML element. You can use this object to
specify different image types for different classes of devices. This means that you can
produce multiple versions of an image and serve the image in the appropriate type to the
requesting device. For example, you can serve an image in WBMP format to Nokia and
text-based browsers, while serving the same image in PNG format to the Openwave
graphical browser.

If one of the main methods to override the default image is not applied, all devices receive
the image specified by the constructor.

Example

Image myImage = new Image("UK Compass", "http://www.openwave.com/images/logo.wbmp");
myImage.addUPGUIPic("http://www.openwave.com/images/logo.png");

Methods

Method Description

Image(String altText, String GenericPicURL) Creates an instance of the Image object
in which:

altText is alternate text to display if
the device does not support images or
cannot find the specified image.

GenericPicURL is the URL of the
image to be displayed unless overridden
by one of the member methods.

Unless overridden by one of the other
methods, the Image object renders the
same tag for each device.

void setAlign(String align) Sets the alignment of the image
(center, left, right).

void setAltText(String altText) Sets the alternate text to be displayed if
the device does not support images or
cannot find the specified image.

void setGenericPic(String GenericPicURL) Sets the URL of the image to be
displayed unless overridden by one of
the member methods.

void setMSIEPic(String imageURL) Sets the URL of the image to be
displayed for Microsoft Internet
Explorer instead of the
GenericPicURL.

void setNokiaPic(String imageURL) Sets the URL of the image to be
displayed for Nokia browsers instead of
the GenericPicURL.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 47

Object Model Reference
Image1
void setUPGUIPic(String imageURL) Sets the URL of the image to be
displayed for graphical Mobile
Browsers instead of the
GenericPicURL.

void setUPTextPic(String imageURL) Sets the URL of the image to be
displayed for Openwave text-based
browsers instead of the
GenericPicURL.

void setHeight(int height) Sets the height of the image in the
display. This method accepts an integer
primitive data type. If you specify a
height value that is not the same as the
actual height of the image, the browser
attempts to scale the image to fit the size
that you specified. This attribute is
currently not supported by Openwave
browsers.

void setHeight(String height) Sets the height of the image in the
display. This method accepts an integer
parameter passed as a string (that is, 1,
2, and so on). If you specify a height
value that is not the same as the actual
height of the image, the browser
attempts to scale the image to fit the size
that you specified. This attribute is
currently not supported by Openwave
browsers.

void setWidth(int width) Sets the width of the image in the
display. This method accepts an integer
primitive data type. If you specify a
width value that is not the same as the
actual width of the image, the browser
attempts to scale the image to fit the size
that you specified. This attribute is
currently not supported by Openwave
browsers.

void setWidth(String width) Sets the width of the image in the
display. This method accepts an integer
parameter passed as a string (that is, 1,
2, and so on). If you specify a width
value that is not the same as the actual
width of the image, the browser
attempts to scale the image to fit the size
that you specified. This attribute is
currently not supported by Openwave
browsers.

Method Description
48 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Image 1
void setHspace(int hspace) Sets the amount of space to the left and
right of the image where nothing else in
the display may encroach. This is useful
for creating a border to the left and to
the right of the image to keep text away
from images. The default setting is 0.

void setVspace(int vspace) Sets the amount of space at the top and
bottom of the image where nothing else
in the display may encroach. This is
useful for creating a border on top and
at the bottom of the image to keep text
away from images.

void setLocalsrc(String localsrc) Direct counterpart of the WML
localsrc attribute. This method sets
the value of the localsrc attribute. It
accepts the name of a known icon to be
displayed instead of the
GenericPicURL. If the device cannot
find the icon in ROM, it attempts to
retrieve it from the Openwave MAG. If
you specify a valid icon, the device
ignores the GenericPicURL and
altText (see constructor above), even
though they are still required.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 49

Object Model Reference
Input1
Input
The Input object is the direct counterpart of the WML <input> element. In addition to
the features of its counterpart, you can use the Input object to specify different input
formats, or masks, for particular browsers, to ensure that users receive adequate feedback.

NOTE The Input object includes methods that you can use to hide, or mask, users’ input
in fields on screen, typically by replacing the characters that users enter with other
characters, such as asterisks. This is a common technique to hide sensitive information,
such as passwords. However, the masked information is not encrypted, so you should not
rely on this feature for security.

Example

Input myInput = newInput(“text”, “nickname”, ““):
:
myCard.addText(“Name?”);
myCard.addElement(myInput);

Methods

Method Description

Input(String type, String name, String value) Creates an instance of the Input object
in which:

type can be text (the default), which
allows users to see the characters they
enter, or password, which causes the
browser to mask the characters that
users enter by replacing them with other
characters, such as asterisks.

name is the variable associated with the
input field where the device stores the
text entered by the user.

value is the initial value of the input
field.

String getTitle() Returns the title of the input field.

boolean getEmptyok() Returns true if the input field can be
left blank; otherwise, returns false.

String getFormat() Returns the format of the data that the
user entry must match.

String getName() Returns the name of the WML variable
in which the device stores the text that
the user enters.

String getMaxlength() Returns the maximum number of
characters that the user can enter.

String getSize() Returns the size of the input field as
shown in the display.
50 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Input 1
String getValue() Returns the text the user entered. If the
user did not enter any text, returns the
value of the variable named by the
WML name attribute.

void setEmptyok(boolean emptyok) Direct counterpart of the WML
emptyok attribute. This method sets the
emptyok attribute to either true or
false. If empty=”true”, the input
field can be left blank.

void setFormat(String format) Direct counterpart of the WML format
attribute. This method sets the input
field format, or the mask, to specify
exactly what characters are allowed in
an input string, and in what position.

void setMaxlength(String maxlength) Direct counterpart of the WML
maxlength attribute. This method
specifies the maximum number of
characters that users can enter in the
field.

void setName(String name) Direct counterpart of the WML name
attribute. This method specifies the
variable name to be associated with the
input field. This variable name is used
to store the input from the user.

void setSize(String size) Direct counterpart of the WML size
attribute. This method specifies the size
of the input field.

If the size attribute is not specified, the
field grows to accommodate all of the
characters that the user enters.

If a value is given to the size attribute,
when the user enters more characters
than can be displayed in the field, the
characters scroll off the screen to the
left. When the user navigates off of the
input element, only the beginning of
the input is visible in the field.

void setTitle(String title) Direct counterpart of the WML title
attribute. This method specifies the title
of the input field. Depending on the
browser, this title may or may not be
displayed.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 51

Object Model Reference
Input1
void setType(String type) Direct counterpart of the WML type
attribute. This method specifies the type
of input field (text or password).
Specifying text allows users to see the
characters they enter. Specifying
password causes the browser to mask
the characters users that enter by
replacing them with other characters,
such as asterisks.

void setValue(String Value) Direct counterpart of the WML value
attribute. This method specifies the
default value of the input field.

If the input field is displayed and the
variable named in the name attribute is
not set, the name variable is assigned
the value specified in the value
attribute.

If the name variable already contains a
value, the value attribute is ignored.

If the value attribute specifies a value
that does not conform to the input mask
specified by the format attribute, the
browser ignores the value attribute.

Method Description
52 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Menu 1
Menu
Menu navigation is implemented with different constructs for different devices or class of
devices. The Openwave Mobile Browser works best with the <select>/<option>
construct, while other browsers work better with variations of the classical list of links.

You can use the Menu object to build menus that OUI renders using the construct that is
best suited to each browser.

Example

The following code builds a menu using the Menu object:

myMenu = new Menu();

//Enrich menu.
myMenu.addEntry("#band","find","Artist/Band search");
myMenu.addEntry("#song","songs","Song search");
myMenu.addEntry("#top","top","Top 40 - all genres");

//Deploy menu.
myCard.addElement(myMenu);

This is how the menu is rendered on the Openwave Mobile Browser.

This is how the menu is rendered on the Nokia browser.

You can also add a task to the menu:

Menu myMenu = new Menu();

//Enrich menu.
myMenu.addEntry("#band","find","Artist/Band search");
myMenu.addEntry("#song","songs","Song search",”smiley”);

myTask = new Caller(myDeck, “oo455551234”, ”CallRadio 1”);

myMenu.addTaskEntry(myTask,"call","Call Radio 1");
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 53

Object Model Reference
Menu1
Methods

Method Description

Menu() Creates an instance of the Menu object.

void addEntry(String url, String title,
String text)

Adds a menu item without an icon in
which:

url is the URL to open when this menu
item is chosen

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, the label should be five
characters, or fewer.

text is the device displays this text to
represent the menu item.

void addEntry(String url, String title,
String text, String localIcon)

Adds a menu item with an icon in
which:

url is the URL to open when this menu
item is chosen.

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, labels should be five
characters, or fewer.

text is the device displays this text to
represent the menu item.

localIcon is the name or number
identifying an icon to be displayed in
front of the menu item.

void addTaskEntry(AbsTask absTask, String title,
String text)

Adds a menu item without an icon, but
navigation implies triggering a task.

The parameters are:

absTask is the task to be performed
when the selection is chosen.

title is a label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, labels should be five
characters, or fewer.

text is the device displays this text to
represent the menu item.
54 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Menu 1
void addTaskEntry(AbsTask absTask, String title,
String text, String localIcon)

Adds a menu item with an icon, but
navigation implies triggering a task.

The parameters are:

absTask is the task to be performed
when the selection is chosen.

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, labels should be five
characters, or fewer.

text is the device displays this text to
represent the menu item.

localIcon is the name or number
identifying an icon to be displayed in
front of the menu item.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 55

Object Model Reference
Onevent1
Onevent
The Onevent object encapsulates information about the WML <onevent> element. This
element is used inside templates and cards.

Example

Template myTemplate = new Template();

Task myTask = new Task(“go”, ”main”)

Onevent myOnevent = new Onevent(myTask, “onenterbackward”);

myTemplate.addOnevent(myOnevent);

Methods

Method Description

Onevent(AbsTask absTask, String type) Creates an instance of the Onevent
object in which:

absTask is the task to be performed
when the event is triggered.

type is the type of event (onpick,
onenterforward,
onenterbackward, or ontimer).

void setType(String type) Direct counterpart of the WML type
attribute. This method sets the type of
event associated with the task.
56 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Picker 1
Picker
The Picker object encapsulates the WML <select> or <option> element, for use with
the Form object without the need for enclosing paragraph tags, and to provide
compatibility with future devices. You use the Picker object to offer users an interface
for selecting one option from a finite set of possible options. Support for this object is
similar in all devices.

Example

Picker myPicker = new Picker(“animal”);

//Enrich picker.
myPicker.addEntry("D","Dog");
myPicker.addEntry("C","Cat");
myPicker.addEntry("H","Horse");
myCard.addElement(myPicker);

Methods

Method Description

Picker(String name) Creates an instance of the Picker
object in which:

name is the value of the name attribute
and, ultimately, the name of the
corresponding WML variable.

void addEntry(String value, String text[, String
onpickURL])

Adds Picker entry in which:

value specifies the value to assign to
the variable defined in the <select>
element name attribute if the user picks
the entry.

text is the device displays this text to
represent the entry.

onpickURL is the URL to open when
the user picks from the entry.

String getIname() Returns the name of the WML variable
that contains the index value of the
selected entry.

String getIvalue() Returns the index of the default value of
the selections.

String getMultiple() Returns true if the user can select
multiple options; otherwise returns
false.

String getName() Returns the name of the WML variable
that returns the value of the selection.

String getValue() Returns the default value or values of
the selection.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 57

Object Model Reference
Picker1
boolean isMultiple() Returns true if the user can pick more
than one option; otherwise, returns
false.

void setIname(String iname) Direct counterpart of the WML iname
attribute. This method sets the name of
the variable that contains the index
value of the selected option.

The index value associated with each
option comes from its position in the
<select> list, starting with 1. If the
user has not selected an option, the
index value is either 0 or the ivalue.

void setIvalue(String ivalue) Direct counterpart of the WML ivalue
attribute. This method sets the default
selection in the list of options by
specifying the index (1, 2, and so on) of
the default selection.

void setMultiple(String multiple) Direct counterpart of the WML
multiple attribute. This method sets
whether the user can select more than
one option from the menu. This method
accepts true or false.

void setMultiple(boolean multiple) Direct counterpart of the WML
multiple attribute.This method sets
whether the user can select more than
one option from the menu. This method
accepts true or false.

void setName(String name) Direct counterpart of the WML name
attribute. This method sets the name of
the corresponding WML variable to
contain the value of the selection.

void setTitle(String title) Direct counterpart of the WML title
attribute. This method sets the label that
identifies the option. The Openwave
text-based browser uses the title as the
ACCEPT key label when the user
selects the option. To ensure
compatibility on a wide range of
devices, the label should be five
characters, or fewer.

void setValue(String value) Direct counterpart of the WML value
attribute.

Method Description
58 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
PickerCard 1
PickerCard
There are cases in which users should be able to set a variable with a single click and then
move on. Although this is similar to the functionality offered by Menu and Picker, those
two objects don’t maximize usability across browsers for this specific case. The
PickerCard object offers this specific functionality.

The PickerCard object includes both standard methods and rendering directives,
methods that dictate how a particular attribute or function should be rendered for a device.

Example

Suppose that your users have to choose a company department and that you want to store
the choice in the WML variable $dept.

This is how the list is rendered on the Openwave Mobile Browser.

This is how the list is rendered on the Nokia browser.

Extending the Menu object to handle the case in which the programmer wants to set a
WML variable would lead to a bloated API. You use the PickerCard object instead:

myPickerCard = new
PickerCard(“picker”,”dept”,”#nextStage”,”next”,”Which Dept.?”);

myPickerCard.addEntry(“plan”,”Planning”);
myPickerCard.addEntry(“deply”,”Deployment”);
myPickerCard.addEntry(“cash”,”Finance”);

myDeck.addCard(myPickerCard);
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 59

Object Model Reference
PickerCard1
Methods

Method Description

PickerCard(String id, String varName, String
nextCardURL, String softkeyLabel, String text)

Creates an instance of the PickerCard
object in which:

id is the identifier for the card.

varName represents the value of the
name attribute and, ultimately, the name
of the corresponding WML variable.

softkeyLabel is the label that appears
in the primary softkey on Openwave
text-based browsers. To ensure
compatibility on a wide range of
devices, the label should be five
characters, or fewer. Devices that don’t
support dynamic labeling ignore the
label attribute.

nextCardURL is the URL to open
when the user picks from one of the
selections.

text is the device displays this text
before the selections.

void addEntry(String value, String text) Adds a Picker entry in which:

value specifies the value to assign to
the variable defined in the <select>
element name attribute if the user
selects the option.

text is the device displays this text to
represent the selection item.

void addEntry(String value, String text, String
onpick, String title)

Adds a Picker entry in which:

value specifies the value to assign to
the variable defined in the <select>
element name attribute if the user
selects the option.

text is the device displays this text to
represent the selection item.

onpick is the URL to open when the
user picks a selection. This URL
overrides the nextCardURL specified
in the constructor.

title is the label that dynamically
appears in the primary softkey for this
entry. This parameter overrides the
softkeyLabel specified in the
constructor.

String getId() Returns the ID of the card.
60 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
PickerCard 1
String getText() Returns the text that the device displays
in front of the selection.

String getNextCardURL() Returns the URL to open when the user
selects an option.

String getVarName() Returns the WML variable name
associated with the option that the user
selects.

void setID(String id) Sets the ID of the card.

void setNextCardURL(String nextCardURL) Sets the URL to open when the user
picks a selection. This URL is
overridden if you specified an onpick
URL in the addEntry method.

void setSoftkeyLabel(String softkeyLabel) Sets a label that appears in the primary
softkey. To ensure compatibility on a
wide range of devices, the label should
be five characters, or fewer. Devices
ignore the label attribute if they do not
support dynamic labeling. However,
this label is overridden if you specify a
title in the addEntry method.

void setText(String text) Sets the text that the device displays in
front of the selection.

void setVarName(Sting varName) Sets the variable name to receive the
value when the user picks from the
selection.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 61

Object Model Reference
PickerCard1
Rendering Directives

Method Description

void enforceLogicalBack(String BackURL) Sets the URL to open when the user
navigates to the card in a backward
direction. This method is useful for
devices that don’t properly redefine
<prev />. This method renders as an
event of type=”onenterbackward”.

void enforceNavigationWithLinks() Ensures that primary and secondary
paths are rendered as hyperlinks,
regardless of the device family.

void enforceTitle() For devices that don’t support the
title attribute for cards, inserts the
title of the card as the first line of text in
the card.

void setEnforceTitle(boolean enforceTitle) Sets whether to enforce display of card
titles for devices that don’t support the
title attribute.
62 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Popup 1
Popup
The graphical Openwave Mobile Browser supports pop-up menus, which you can create
with the Popup object. Pop-up menus present users with a convenient list of options,
rather than a field in which they must enter text. On text-based browsers, a pop-up menu
created with the Popup object is rendered a menu.

Example

The following example uses the Popup object to create a pop-up menu:

Popup myPopup = new Popup("popup");
myPopup.addEntry("on1", "1/2 hour");
myPopup.addEntry("on2", "1 hour");
myPopup.addEntry("on3", "2 hours");

On the graphical Openwave Mobile Browser, the code is rendered as a pop-up menu.

On the text-based Openwave Mobile Browser, the code is rendered as a list of options.

On the Nokia browser, the code is rendered as follows.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 63

Object Model Reference
Popup1
Methods

Method Description

Popup(String name) Creates an instance of the Popup object
in which:

name is the name of the variable in
which the device stores the value of a
corresponding selection. This also
becomes the value of the WML name
attribute.

void addEntry(String key, String value) Adds an entry to the list of options in
which:

key is the value to be contained in the
name variable when the user picks from
the list of options.

value is the text describing the option.

void addEntry(String key, String value, String
onpick)

Adds an entry to the list of options in
which:

key is the value to be contained in the
name variable when the user picks from
the list of options.

value is the text describing the option.

onpick is the URL to open when the
user selects the option.

String getIname() Returns the name of the WML variable
that contains the index value of the
selected option.

String getIvalue() Returns the index of the default value of
the selections.

String getName() Returns the name of the WML variable
that returns the value of the selection.

String getValue() Returns the default value or values of
the selection.

void setIname(String iname) Direct counterpart of the WML iname
attribute. This method sets the name of
the variable that contains the index
value of the selected option.

The index value associated with each
option comes from its position in the
<select> list, starting with 1. If the
user has not selected an option, the
index value is either 0 or the ivalue.
64 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Popup 1
void setIvalue(String ivalue) Direct counterpart of the WML ivalue
attribute. This method sets the default
selection in the list of options by
specifying the index (1, 2, and so on) of
the default selection.

void setName(String name) Direct counterpart of the WML name
attribute. This method sets the name of
the corresponding WML variable to
contain the value of the selection.

void setValue(String value) Direct counterpart of the WML value
attribute. This method sets the default
selection in the list of options by
specifying the value associated with the
default selection. If the name attribute
already has a value when the user
navigates to the <select> element, the
value attribute is ignored.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 65

Object Model Reference
Radio1
Radio
You can use the Radio object to add radio buttons to your wireless applications for the
graphical Openwave Mobile Browser. On text-based browsers, the Radio object renders
radio buttons with the <select> and <option> WML elements.

Example

The following example uses the Radio object to create a set of radio buttons:

Radio myRadio = new Radio("radiovar");
myRadio.addEntry("on1", "1/2 hour");
myRadio.addEntry("on2", "1 hour");
myRadio.addEntry("on3", "2 hours");

On the graphical Openwave Mobile Browser, the code is rendered like this.

On the text-based Openwave Mobile Browser, the code is rendered like this.

On the Nokia browser, the code is rendered like this.
66 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Radio 1
Methods

Method Description

Radio(String name) Creates an instance of the Popup object
in which:

name is the name of the variable in
which the device stores the value of a
corresponding selection. This also
becomes the value of the WML name
attribute.

void addEntry(String key, String value) Adds an entry to the list of options in
which:

key is the value to be contained in the
name variable when the user picks from
the list of options.

value is the text describing the option.

void addEntry(String key, String value, String
onpick)

Adds an entry to the list of options in
which:

key is the value to be contained in the
name variable when the user picks from
the list of options.

value is the text describing the option.

onpick is the URL to open when the
entry is selected.

String getIname() Returns the name of the WML variable
that contains the index value of the
selected option.

String getIvalue() Returns the index of the default value of
the selections.

String getName() Returns the name of the WML variable
that will return the value of the
selection.

String getValue() Returns the default value or values of
the selection.

void setIname(String iname) Direct counterpart of the WML iname
attribute. This method sets the name of
the variable that contains the index
value of the option selected.

The index value associated with each
option comes from its position in the
<select> list, starting with 1. If the
user has not selected an option, the
index value is 0 or the ivalue.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 67

Object Model Reference
Radio1
void setIvalue(String ivalue) Direct counterpart of the WML ivalue
attribute. This method sets the default
selection in the list of options by
specifying the index (1, 2, and so on) of
the default selection.

void setName(String value) Direct counterpart of the WML name
attribute. This method sets the name of
the corresponding WML variable to
contain the value of the selection.

void setValue(String value) Direct counterpart of the WML value
attribute. This method sets the default
selection in the list of options by
specifying the value associated with the
default selection.

Method Description
68 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
SimpleLink 1
SimpleLink
The SimpleLink object is a simple link. It is encapsulated in an
object to support the accesskey attribute, which is an Openwave extension to WML 1.2
that you can use to associate a number between 0 and 9 with the link. This is a keyboard
accelerator for power users, who can trigger the link by pressing the corresponding
number key on the device keypad.

Example

SimpleLink mySimpleLink = new SimpleLink(“band.wml”,”the band”);

mySimpleLink.setTitle(“band”);
mySimpleLink.setAccesskey(1);
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 69

Object Model Reference
SimpleLink1
Methods

Method Description

SimpleLink(String url, String text) Creates an instance of the SimpleLink
object in which:

url is the URL to open when the link is
chosen.

text is what the device displays to
represent the link.

void setAccesskey(int accesskey) Sets the accesskey attribute for
devices that support it. The number that
you specify through this method
appears to the left of the link. Pressing
the corresponding key on a device that
supports this attribute results in
immediate navigation. This method
requires a primitive integer parameter.

void setAccesskey(String accesskey) Sets the accesskey attribute for
devices that support it. The number that
you specify through this method
appears to the left of the link. Pressing
the corresponding key on a device that
supports this attribute results in
immediate navigation. This method
requires an integer parameter passed as
a string.

void setText(String text) Sets the text that the device displays to
represent the link.

void setTitle(String title) A direct counterpart of the WML
title attribute. Sets the label that
appears on the primary softkey that is
associated with the link.

void setURL(String simpleURL) A direct counterpart of the WML href
attribute of the <a> element. Sets the
URL to open when the link is chosen.
70 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Table 1
Table
You can use the Table object to build tables for devices that support them, and whose
contents are preserved when rendered on devices that don’t support tables.

Although tables are part of WML 1.1, some browsers, such as the Nokia browser, do not
support tables and simply ignore table tags (table, tr, and td). Because this makes the
content in tables meaningless on some browsers, many developers don’t use tables.

The Table object offers three ways of interpreting the meaning of information laid out in
a table:

• Row logic: The information displayed in a table makes sense if interpreted on a row
basis. In row logic, rows are the subparts of a table that need to be preserved, in the
sense that breaking the integrity of a row implies losing information.

• Column logic: The information presented makes sense on a columnar basis. In
column logic, columns must be preserved.

• Matrix logic: Both dimensions must be preserved.

OUI supports tables of the first two kinds and makes sure that each device supports tables
to the best of its abilities. OUI also attempts to display tables with matrix logic.

Example

To build the following table with row logic,

you can write the following code using the Table object:

Table myTable = new Table(Table.ROW_MODE,2);

myTable.addRow(new String[] { “Low”,”24”});
myTable.addRow(new String[] { “High”,”36”});

myCard.addElement(myTable);

On the Openwave Mobile Browser, row logic is rendered like this:

LOW 24

HIGH 36
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 71

Object Model Reference
Table1
On the Nokia browser, row logic is rendered like this:

To build the following table with column logic,

you can write the following code using the Table object:

Table myTable = new Table(Table.COLUMN_MODE ,2);

myTable.addColumn(new String[] { “Low”,”24”});
myTable.addColumn(new String[] { “High”,”36”});

myCard.addElement(myTable);

On the Openwave Mobile Browser, column logic is rendered like this.

On the Nokia browser, column logic is rendered like this.

LOW HIGH

24 36
72 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Table 1
To build the following table with matrix logic,

you can write the following code using the Table object:

Table myTable = new Table(Table.MATRIX_MODE,3);

myTable.setColumnHeaders(new String[] { “”,“Low”,”High” });
myTable.addRow(new String[] { “Rome”,”24”,”36” });
myTable.addRow(new String[] { “Milan”,”22”,”31” });

myCard.addElement(myTable);

On the Openwave Mobile Browser, matrix logic is rendered like this.

On the Nokia browser, matrix logic is rendered like this.

Methods

The possible values of tableMode are:

• Table.COLUMN_MODE

• Table.MATRIX_MODE

• Table.ROW_MODE

Low High

Rome 24 36

Milan 22 31
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 73

Object Model Reference
Table1
Method Description

Table(int tableMode, int numberOfColumns) Creates an instance of the Table object
in which:

tableMode is the logic or manner of
interpreting the meaning of the
information in the table. The value can
be 0 for row logic, 1 for column logic,
or 2 for matix logic.

numberOfColumns is the number of
columns of the table to be created.

This constructor requires a primitive
integer value.

Table(String tableMode, String numberOfColumns) Creates an instance of the Table object
in which:

tableMode is the logic or manner of
interpreting the meaning of the
information in the table. The values can
be row, column, or matrix.

numberOfColumns is the number of
columns of the table to be created. This
must be an integer value passed as a
string.

void addColumn(String[] items) Adds a column to the table. The table
logic (see tableMode in constructor)
must be set to column.

void addRow(String[] items) Adds a row to the table. The table logic
(see tableMode in constructor) must
be set to row or matrix.

void setAlignment(int align) Direct counterpart of the WML align
attribute. This method sets the text
alignment relative to the column. The
values can be 0 for left alignment, 1 for
center alignment, or 2 for right
alignment.

void setAlignment(String alignName) Direct counterpart of the WML align
attribute. This method sets the text
alignment relative to the column. The
values can be left for left alignment,
center for center alignment, or right
for right alignment.

void setColumnHeaders(String[] items) Specifies table headers for tables with
matrix logic.

void setTitle(String newTitle) Direct counterpart of the WML title
attribute. This method sets the label for
the table.
74 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Task 1
Task
The Task object abstracts the familiar WML tasks, such as go, prev, noop, and
refresh.

Tasks can be passed to Anchor and DoElement objects and to the navigation paths in
cards and menus.

Example

The following code creates a go task element with a postfield. The task is associated with
the primary path for the card.

Task myTask = new Task("go", "#card2", "get");
myTask.addPostfield("firstname", "$firstname");
//activating the task is the primary activity on this card
myCard.addPrimaryPathTask(myTask, "card2", "go to card2");

Methods

Method Description

Task() Creates an instance of the Task object.

Task(String taskType) Creates an instance of the Task object
in which:

taskType is the type of task to be
executed (go, prev, noop, refresh,
and so on).

Task(String taskType, String taskURL) Creates an instance of the Task object
in which:

taskType is the type of task to be
executed (such as go or spawn).

taskURL is the URL to open when the
task is executed.

This method is for tasks, such as go,
that navigate to another URL.

Task(String taskType, String taskURL, String method) Creates an instance of the Task object
in which:

taskType is the type of task to be
executed (such as go or spawn).

taskURL is the URL to open when the
task is executed.

method specifies the HTTP submission
method (get or post).

This method is for tasks, such as go,
that navigate to another URL.

void addPostfield(String name, String value) Adds a WML <postfield> element to
the task.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 75

Object Model Reference
Task1
void addSetvar(String name, String value) Adds a WML <setvar> element to the
task.

void setMethod(String method) Direct counterpart to the method
attribute of the WML <go> element.

Specifies the HTTP submission method
(get or post) when passing data
through an HTTP request.

void setTaskType(String taskType) Specifies the type of task to be executed
(go, prev, noop, refresh, and so on).

void setTaskURL(String taskURL) Specifies the URL to open when the
task is executed.

Method Description
76 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
TaskMenu 1
TaskMenu
The TaskMenu object encapsulates card-level menus for the graphical Openwave Mobile
Browser, but renders such menus as an extra card on text-based browsers.

The graphical Mobile Browser supports long task menus in the form of a menu associated
with the second softkey. On text-based browsers, such menus are isolated in new cards and
made easily accessible. This mechanism replaces the traditional way of supporting
multiple paths on text-based browsers. Output is enhanced on the graphical Mobile
Browser and rendered gracefully on older browsers.

NOTE If you use a TaskMenu object you cannot define a secondary path, because these
features rely on identical WML constructs and cover similar needs.

Example

You can use the TaskMenu object to create a card-level menu as follows:

Card myCard = new Card(“taskmenusample”, “TaskMenu”);
TaskMenu myTaskMenu = new TaskMenu(myDeck, "Menu", "Show Menu");
myTaskMenu.addEntry("#emailreply", "Reply", “Reply”);
myTaskMenu.addEntry("#delete", "Delete", “Delete”);
myTaskMenu.addEntry("#forward", "Forward", "Fwd");
myTaskMenu.addEntry("#save", "Save", “Save”);
myTaskMenu.addEntry("#attach", "Attachment", “Attach”);
myTaskMenu.addEntry("#new", "Create New", “New”);
myCard.setTaskMenu(myTaskMenu);

On the graphical Mobile Browser, the task menu is quickly accessible through the second
softkey.

On an Openwave text-based browser, the task menu is rendered as an extra card.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 77

Object Model Reference
TaskMenu1
On the Nokia browser, the task menu is rendered in a new card.

Methods

Method Description

TaskMenu(Deck deck, String shortTitle, String
longTitle)

Creates an instance of the TaskMenu
object in which:

deck is a WML deck.

shortTitle is the short label for the
TaskMenu. This text appears as the
secondary softkey label for Openwave
browsers.

longTitle is the long label for the
TaskMenu. This text appears as a link
for Nokia browsers.

void addEntry(String url, String title, String text) Adds a menu item without an icon in
which:

url is the URL to open when this menu
item is chosen.

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, the label should be five
characters, or fewer.

text is the device displays this text to
represent the selection item.
78 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
TaskMenu 1
void addEntry(String url, String title, String text,
String localIcon)

Adds a menu item with an icon in
which:

url is the URL to open when this menu
item is chosen.

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, the label should be five
characters, or fewer.

text is the device displays this text to
represent the selection item.

localIcon is the name or number
identifying an icon to be displayed in
front of the menu item.

void addTaskEntry(AbsTask absTask, String title,
String text, String localIcon)

Adds a menu item with an icon but
navigation implies triggering a task.
The parameters are:

absTask is the task to be performed
when the selection is chosen.

title is the label that identifies the
option. The Openwave Mobile Browser
uses the title as the ACCEPT key label
when the user selects the option. To
ensure compatibility on a wide range of
devices, the label should be five
characters, or fewer.

text is the text the device displays to
represent the selection item.

localIcon is the name or number
identifying an icon to be displayed in
front of the menu item.

Method Description
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 79

Object Model Reference
Template1
Template
The Template object encapsulates the WML <template> element.

This object defines deck-level event bindings, for example, characteristics that apply to all
cards in a deck. However, you can override these characteristics for a particular card by
specifying the same event bindings in the Card object.

Example

Template myTemplate = new Template();

//Define a task.
Task myTask = new Task(”go”,”home.wml”);
DoElement myDoElement = new DoElement(myTask, “options”,”home”);

myTemplate.addDoElement(myDoElement);

myDeck.addTemplate(myTemplate);

Methods

Method Description

Template() Creates an instance of the Template
object.

void addDoElement(DoElement doElement) Adds a DoElement object (see
“DoElement” on page 30).

void addOnevent(Onevent doElement) Adds an Onevent object
(see“Onevent” on page 56).
80 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

Object Model Reference
Timer 1
Timer
The Timer object encapsulates the WML <timer> element. You can add a Timer object
to a card to set a timer that will trigger an event when the timer expires.

NOTE You must qualify the Timer class to avoid conflicting with the Java Timer utility
in java.util.Timer.

Example

com.openwave.oui.waomelements.Timer myTimer = new com.openwave.oui.waomelements.Timer()

myTimer.setName(“ToCard2”);
myTimer.setName(“10”);
Card myCard = new Card(“timersample”, “Timer”);
myCard.setOntimer(“#someURL”);
myCard.setTimer(myTimer);

Methods

Method Description

Timer() Creates an instance of the Timer object.

Timer(String time) Creates an instance of the Timer object
in which:

time is he direct counterpart of the
WML value attribute of the <timer>
element. This method specifies the
length of time (in units of 1/10 seconds)
to wait before triggering an event.

void setName(String name) Direct counterpart of the name attribute.
This method specifies the name of the
timer.

void setTime(String time) Direct counterpart of the value
attribute. This method specifies the
length of time (in units of 1/10 seconds)
to wait before triggering an event.
Openwave Usability Interface, Java Edition 1.0 Beta Object Model Reference 81

Object Model Reference
Timer1
82 Object Model Reference Openwave Usability Interface, Java Edition 1.0 Beta

	Object Model Reference
	Legal Notice
	Contents
	Preface
	About This Guide
	Related Documentation
	Technical Support

	Object Model Reference
	Anchor
	Example
	Methods

	Appendix
	Methods

	BodyPager
	Example
	Methods

	Button
	Example
	Methods

	Caller
	Methods

	Card
	Card Title
	Navigation
	Redefining the <prev> Task
	Enhancing the GUI
	Methods
	Rendering Directives

	Check
	Example
	Methods

	ComboMenu
	Example
	Methods

	Deck
	Example
	Methods

	DeviceContext
	Example
	Methods

	DoElement
	Example
	Methods

	Form
	Methods
	Rendering Directives

	Head
	Example
	Methods

	HRule
	Example
	Methods

	Image
	Example
	Methods

	Input
	Example
	Methods

	Menu
	Example
	Methods

	Onevent
	Example
	Methods

	Picker
	Example
	Methods

	PickerCard
	Example
	Methods
	Rendering Directives

	Popup
	Example
	Methods

	Radio
	Example
	Methods

	SimpleLink
	Example
	Methods

	Table
	Example
	Methods

	Task
	Example
	Methods

	TaskMenu
	Example
	Methods

	Template
	Example
	Methods

	Timer
	Methods

