
Getting Started
Openwave Usabi l i ty In terface, Java Edi t ion 1 .0 Beta
Openwave Systems Inc.
1400 Seaport Boulevard
Redwood City, CA 94063
http://www.openwave.com

Part Number OUGS-10-006
November 2001

http://www.openwave.com

LEGAL NOTICE

Copyright © 1994–2001, Openwave Systems Inc.
All rights reserved.

Openwave, the Openwave Systems Inc. logo, Phone.com, the Phone.com logo, and the family of terms carrying the “UP.” prefix are
trademarks of Openwave Systems Inc.

All other company, brand, and product names are referenced for identification purposes only and may be trademarks that are the
sole property of their respective owners.

Contents
About This Book v
Audience v
Related Documentation v
Technical Support vi
Other Resources vi

WAP vi
Java vi

Style and Typographical Conventions vi

1: Introducing OUI 1
The WML Dilemma 1
The OUI Solution 2
An Example with Menus 2
Getting Started 7

2: Creating a OUI Service 9
Installing OUI and a Java Server 9
Openwave SDK 9
OUI Programming 9

WML Tag Library 10
XHTML Tag Library 11

Previewing Your OUI Application 15
Using the Openwave SDK 15
Using Other SDKs 15
Using Mobile Browser Devices 15
Using MS Internet Explorer 5.x 15

Raw Mode: An Extra Operation Mode 17
Openwave Usability Interface, Java Edition 1.0 Beta Getting Started iii

Contents
3: OUI Application Fundamentals 19
Menus 19
Forms and Primary Paths 21

XHTML Tag Library 23
Secondary Paths and Side Paths 23
TaskMenus 25
ComboMenu 27
Publishing Large Chunks of Text: BodyPager 29
Making Phone Calls: Caller (and Rendering Directives) 31
WML Tables on All Browsers: Table 33
Reducing Perceived Latency: Mobile-Originated Prefetch 35
Application-level Optimization: Conditional Tags 36
Raw Mode: When All Else Fails 38
iv Getting Started Openwave Usability Interface, Java Edition 1.0 Beta

Preface
About This Book
This book shows you how to use the OpenwaveTM Usability Interface (OUI), Java Edition
1.0 Beta to create a single Wireless Markup Language (WML) application that operates
optimally on various types of Wireless Application Protocol (WAP) devices.

Audience
This book is intended for WAP developers who want to create and host WML applications
that run well on more than one type of mobile browser.

You can write OUI applications using the Java language or the OUI XHTML or WML tag
libraries. Depending on the method you choose, you will need a background in that
technology.

Related Documentation
OUI comes with the following documentation:

• Installation and Integration describes how to install and configure OUI and the Java
server and development software required to host and develop OUI applications. It
also includes some basic OUI examples.

• Getting Started (this book) describes OUI and how to use it.

• The Object Model Reference describes the details about the Java implementation for
each OUI object.

• The WML Tag Library Reference describes each WML tag library tag and attribute.

• The XHTML Tag Library Reference describes each XHTML Mobile Profile tag
library tag and attribute.

The Openwave SDK comes with documentation for XHTML-MP, WML and WML script,
and related topics. For a complete list of documentation, see:

http://developer.openwave.com
Openwave Usability Interface, Java Edition 1.0 Beta Getting Started v

http://developer.openwave.com

Preface
Technical Support
Technical Suppor t
The best resource for up-to-date information on using OUI is the Openwave Developer
site:

http://developer.openwave.com

In addition to the downloadable OUI, this site contains a variety of useful resources,
including Frequently Asked Questions, bug reporting, technical support, and an
interactive developer forum.

Other Resources

WAP
• WAP Forum: http://www.wapforum.com

• WML Pulse Europe: http://wmlpulse-europe.openwave.com

• WAP FAQs: http://www.allnetdevices.com/faq/

• WML Forum: http://groups.yahoo.com/group/wmlprogramming

• WMLScript.com: http://www.wmlscript.com

• WirelessDeveloper.com: http://www.wirelessdeveloper.com

• WirelessDevNet.com: http://www.wirelessdevnet.com

Java
• Allaire JRun: http://www.jrun.com/

• Jakarta Tomcat: http://jakarta.apache.org/

• Resin-CMP: http://www.caucho.com

• SUN JSP: http://java.sun.com/products/jsp

• SUN Servlets: http://java.sun.com/products/servlet

Style and Typographical Conventions
This manual uses different fonts to represent the information that you enter:

• Text that appears like this identifies command names, path names, URLs,
and specific text that you must enter.

• Text that appears like this identifies placeholders or variables that you
should replace with values appropriate to your environment.
vi Getting Started Openwave Usability Interface, Java Edition 1.0 Beta

http://developer.openwave.com
http://www.wapforum.com
http://wmlpulse-europe.openwave.com
http://www.allnetdevices.com/faq/
http://groups.yahoo.com/group/wmlprogramming
http://www.wmlscript.com
http://www.wirelessdeveloper.com
http://www.wirelessdevnet.com
http://www.jrun.com/
http://jakarta.apache.org/
http://www.caucho.com
http://java.sun.com/products/jsp
http://java.sun.com/products/servlet

1
Chapter 1 Introducing OUI
You can use the Openwave Usability Interface (OUI) to build a single wireless application
that delivers the best possible user experience to a wide variety of Wireless Application
Protocol (WAP) devices. The current release of OUI is a developer library implemented in
Java, plus tag libraries modeled on the Wireless Markup Language (WML) and XHTML
Mobile Profile (XHTML-MP).

You can download OUI at no charge from the Openwave Developer Web site:

http://developer.openwave.com

The best tool for writing OUI applications is the Openwave SDK 5.1 Preview, which is
also available free of charge from the Openwave Developer Web site. This edition of the
Openwave SDK features an integrated development environment (IDE), with a text editor
that recognizes and can highlight the syntax of code you write using the OUI WML and
XHTML tag libraries. The IDE also provides a simulator for the graphical Openwave
Mobile Browser, which you can use to test your OUI applications.

You host OUI applications on a web server that is configured to support Java Server Pages
(JSP) and servlets. One example is the Tomcat Java server from the Apache Software
Foundation. Installing and configuring a Java server, a Java SDK, and OUI so you can start
developing and hosting OUI applications is described detail in the OUI Installation and
Integration book.

The WML Dilemma
WML is a markup language based on Extensible Markup Language (XML). It is designed
for specifying user interface behavior and displaying content on wireless devices such as
phones, pagers, and personal digital assistants (PDAs).

The Wireless Application Protocol (WAP) Forum is an industry organization dedicated to
developing open standards for wireless communication. It has provided a formal
specification for WML, which includes the Document Type Definition (DTD) for WML.
See the WAP Forum web site for full WAP specifications:

http://www.wapforum.org

In practice, the manufacturers of WML browsers and the devices they run on have
interpreted the WML standard very differently, so WML applications that run well on one
device are often unusable or simply fail on other devices.
Openwave Usability Interface Getting Started 1

http://www.wapforum.org

Introducing OUI
The OUI Solution1
This has left developers with difficult choices: Write WML applications that work well on
one device but work poorly (if at all) on others, or write and maintain two or more versions
of the same application. A third choice, writing a lowest-common-denominator
application that works on all devices has proved equally frustrating: The set of common
features is small, and shrinks each time a new device is introduced.

The OUI Solut ion
OUI solves this dilemma by offering a set of high-level APIs that encapsulate the building
blocks of ideally usable WML applications.

When you build a OUI application out of these building blocks and a user connects to it,
OUI recognizes the details of the user’s WAP browser, device, and gateway and delivers
the most appropriate and usable WML code: You don’t need to write and maintain
multiple versions of your applications to offer the best user experience to a wide array of
mobile devices.

OUI is optimized for the current generations of graphical and text-based Openwave
Mobile Browsers (4.x and 5.x) and for Nokia WAP 1.1 browsers. For current or future
devices that OUI doesn’t recognize, OUI delivers a generic version of WML that ensures
your applications will run. As new WAP devices appear on the market, new OUI libraries
can support them without your having to change your current code: Your applications will
simply run better.

An Example with Menus
Menus are a feature of WML applications that are interpreted quite differently on different
browsers.

The WML code segment shown in Listing 1-1 provides optimum usability for menu
navigation on Nokia browsers.
2 Getting Started Openwave Usability Interface

Introducing OUI
An Example with Menus 1
Listing 1-1.

<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Control examples: Menu Navigation on Nokia -->

<wml>

<card id="testcard" title="short">
<p align="left" mode="wrap" >

Weather
Restaurants
Movie Theaters
Casinos
Zoologic Park
Fun for family

</p>
</card>

</wml>

When this code is run on an Openwave Mobile Browser, users are deprived of a useful
shortcut to access menu items: they cannot use the numeric keypad to jump to an option.
Instead, they must scroll down to reach it.

To optimize the WML code for Openwave Mobile Browser users, you can take the
approach shown in Listing 1-2.
Openwave Usability Interface Getting Started 3

Introducing OUI
An Example with Menus1
Listing 1-2.

<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"
"http://www.phone.com/dtd/wml11.dtd">

<!-- Control examples: Menu Navigation on the Openwave Mobile
Browser -->

<wml>
<card id="testcard" title="short">
<p align="left" mode="nowrap" >
<select>
<option title="Weather" onpick="#weath">
Weather

</option>
<option title="Eat" onpick="#eat">

Restaurants
</option>
<option title="Movie" onpick="#cinema">

Movie Theaters
</option>
<option title="Gamble" onpick="#gamble">

Casinos
</option>
<option title="Zoo" onpick="#zoo">

Zoologic Park
</option>
<option title="Fun" onpick="#fun">

Fun for family
</option>

</select> </p>
</card>

</wml>

Unfortunately, this code degrades usability on the Nokia browser to an unacceptable level:
The Nokia browser actually breaks on this code because of the in-line images, which
depend on WML extensions. If the images were removed the Nokia would not break, but
usability would be poor. For this reason, many developers use hyperlinks to build menus.
They adopt the “generic WML” model—that is, coding for a generic browser.

However, this approach has some serious problems. It deprives the owners of advanced
WAP devices of many of the possibilities offered by their handsets. This is a direct
consequence of the “least common denominator” approach. In particular, the generic
approach prevents users from fully exploiting the capabilities of the Openwave Mobile
Browser.

This is not the only serious problem. Let’s assume that you have chosen the generic
approach for your application and that a new WAP device is released onto the market. The
fact that you have already compromised in terms of user interface capabilities does not
protect you from new devices with different interpretations that require you to change your
code again and possibly further degrade the overall usability of your application.
4 Getting Started Openwave Usability Interface

Introducing OUI
An Example with Menus 1
OUI provides a solution that allows you to create and maintain a single version of your
application while supporting optimal usability on a multitude of devices.

Consider the segment of OUI WML tag library code shown in Listing 1-3:

Listing 1-3.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="testcard" title="short">
<oui:p align="left" mode="nowrap">

<oui:menu>
<oui:menu_item title="Weather" href="#weath" text="Weather" icon="sun"/>
<oui:menu_item title="Eat" href="#eat" text="Restaurants" icon="meal1"/>
<oui:menu_item title="Movie" href="#cinema" text="Movie

Theaters"icon="camcorder" />
<oui:menu_item title="Gamble" href="#gamble" text="Casinos"icon="dice" />
<oui:menu_item title="Zoo" href="#zoo" text="Zoologic Park"icon="camera1" />
<oui:menu_item title="Fun" href="#fun" text="Fun for family"icon="family" />

</oui:menu>
</oui:p>

</oui:card>
</oui:wml>

The Menu object is a OUI abstraction representing a navigation menu. The object is
created and progressively enriched with information about the menu items.

When this file is served to a user, OUI determines the requesting device and returns one of
the WML versions shown in Listing 1-1 and Listing 1-2, depending on the family of the
device: Hyperlinks for Nokia handsets, <select>/<option> for the Openwave Mobile
Browser, and hyperlinks followed by line breaks for generic WAP devices.

This application produces the following output on a Nokia handset.

This illustration shows the best output that the handset can manage when implementing
menu-like navigation.
Openwave Usability Interface Getting Started 5

Introducing OUI
An Example with Menus1
The Openwave Mobile Browser is better served by <select>/<option> elements (and
possibly some in-line icons), as shown in the following figure.

This is a great improvement over the generic WML, which many developers use in GSM
areas.

Compare the previous figure with what generic WML would produce on the same phone.

This is what Openwave Mobile Browser users experience in GSM areas. Usability is much
lower than the level that the handsets are actually capable of providing.
6 Getting Started Openwave Usability Interface

Introducing OUI
Getting Started 1
Gett ing Star ted
The current version of OUI offers you a number of choices for how you write your OUI
applications:

• You can write your applications in Java, to take advantage of the powerful Java
programing environment.

• You can write your applications using the OUI WML tag library, a quick and easy
way to start writing OUI applications, particularly if you’re already familiar with
WML.

• You can write your applications using the OUI XHTML tag library, which is also
much simpler than the OUI Java APIs, and which you can use to experiment with
XHTML Mobile Profile, the new mark-up standard specified by the WAP forum.

• You can write applications that mix these approaches, taking advantage of the
strengths of each.

The next chapter in this book, “Creating a OUI Service,”, gets you started writing a simple
application using each of these approaches.

The final chapter in this book, “OUI Application Fundamentals,” offers greater detail
about the most important building blocks of OUI applications.
Openwave Usability Interface Getting Started 7

Introducing OUI
Getting Started1
8 Getting Started Openwave Usability Interface

2
Chapter 2 Creating a OUI Service
The information in this chapter will help you begin to create and preview OUI
applications and services.

Instal l ing OUI and a Java Server
To use the Openwave Usability Interface (OUI), you must first install and configure OUI
and a Java Application Server. See OUI Installation and Integration for instructions.

Openwave SDK
The Openwave SDK 5.1 Preview provides an Integrated Development Environment (IDE)
that helps you develop OUI services. The IDE integrates a number of mobile browser
simulators that allow you to preview your services on several phone models. It also
provides file headers for new JSP files and syntax coloring for OUI tag library files in the
editor.

You can download the Openwave SDK 5.1 Preview from the Openwave Developer web
site:

http://developer.openwave.com

OUI Programming
You can write OUI applications using the Java language or the OUI XHTML or WML tag
libraries. OUI applications are implemented as Java Server Pages (JSP) or Java servlets.
You can use the examples in the this chapter to learn about OUI and to determine the OUI
programming tools that make the most sense for your needs.

In each example, a different OUI technology is used to create the same application for a
mobile browser device.
Openwave Usability Interface Getting Started 9

http://developer.openwave.com

Creating a OUI Service
OUI Programming2
WML Tag Library
The following example shows a “Hello World” application using the OUI WML tag
library.

1 In the application server webapps directory, create a new directory called
testing.

For Tomcat:

%TOMCAT_HOME%\webapps\ROOT\testing

2 Enter the following code in a text editor (such as the Openwave IDE).

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card title="WML Greeting" id="main">
<oui:p mode="nowrap">
Hello World!

</oui:p>
</oui:card>

</oui:wml>

3 Save the file in the new testing directory as wmlHello.jsp.

4 Open the file in a web browser or in the Openwave IDE.

For Tomcat, the URL is:

http://localhost:8080/testing/wmlHello.jsp
10 Getting Started Openwave Usability Interface

Creating a OUI Service
OUI Programming 2
Figure 2-1. WML JSP display

XHTML Tag Library

1 Enter the following code in a text editor (such as the Openwave IDE).

<%@ taglib uri="/WEB-INF/tld/xhtmloui.tld" prefix="oui" %>
<oui:html xmlns="http://www.w3.org/1999/xhtml">

<oui:head>
<oui:title>XHTML Greeting</oui:title>

</oui:head>
<oui:body>

<oui:p align="center">
Hello World!

</oui:p>
</oui:body>

</oui:html>

2 Save the file in the testing directory as xhtmlHello.jsp.
Openwave Usability Interface Getting Started 11

Creating a OUI Service
OUI Programming2
3 Open the file in a web browser or in the Openwave IDE.

For Tomcat, the URL is:

http://localhost:8080/TestXhtml/xhtmlHello.jsp

Figure 2-2. XHTML JSP display
12 Getting Started Openwave Usability Interface

Creating a OUI Service
OUI Programming 2
Java Servlets
The following example shows you how to create a “Hello World” application that is a Java
servlet.

1 Enter the following code in a text editor.

import java.util.*;
import com.openwave.oui.framework.*;
import com.openwave.oui.waomelements.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws javax.servlet.ServletException,
java.io.IOException {

performTask(request, response);
}
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws javax.servlet.ServletException,
java.io.IOException {

performTask(request, response);
}
public void performTask(HttpServletRequest request,

HttpServletResponse response) {

try {
DeviceContext dc = new DeviceContext

(request,response);
Deck myDeck = new Deck();
Card myCard = new Card("hello","A Greeting");
myCard.setTitle("A Greeting");
myCard.beginParagraph();
myCard.addText("Hello World!");
myCard.endParagraph();
myDeck.addCard(myCard);
dc.render(myDeck);

}
catch (Throwable theException) {

theException.printStackTrace();
}

}
}

2 Save the file as HelloWorld.java in the directory where the Java server stores
Java class files.

For Tomcat, the class directory is:

%TOMCAT_HOME\webapps\ROOT\WEB-INF\classes

3 Choose Start > Run.
Openwave Usability Interface Getting Started 13

Creating a OUI Service
OUI Programming2
4 In the Run dialog box, enter cmd and click OK.

5 In the DOS command prompt window, change to the directory in which the Java
server stores Java class files.

For Tomcat, Enter:

cd %TOMCAT_HOME%\webapps\ROOT\WEB-INF\classes

6 Enter

javac HelloWorld.java

The class directory now contains the HelloWorld.class file, which can be
accessed from a web browser or the SDK simulator. When accessing this file, don’t
include the .class extension in the URL.

7 Open the file in a web browser or in the Openwave IDE.

For Tomcat, the URL is:

http://localhost:8080/servlet/HelloWorld

Figure 2-3. WML servlet display
14 Getting Started Openwave Usability Interface

Creating a OUI Service
Previewing Your OUI Application 2
Previewing Your OUI Applicat ion
There are a number of ways to preview your OUI application.

Using the Openwave SDK
When developing OUI applications, you should use the Openwave SDK 5.1 Preview,
which you can download without charge at:

http://developer.openwave.com

When cross-testing, you should use SDKs associated with the other WAP devices for
which you are developing.

It is highly recommended that you also test your final applications on real devices running
their respective browsers. This procedure helps to establish minor or subtle differences
between simulators and actual devices and it ensures that your applications operate
correctly on real devices.

Examples of using the Openwave SDK to preview OUI applications are shown in
Figure 2-1, Figure 2-2, and Figure 2-3.

Using Other SDKs
Because OUI produces wireless services that can be displayed by many WAP compliant
mobile devices, it is useful to test your applications on SDKs that simulate these other
devices. Many of these can be obtained at no charge.

Using Mobile Browser Devices
While simulators and development environments are a good way to test your OUI
application, the best way is to use actual mobile devices. To test on a mobile device, you
must have access to a server approved by the carrier to handle web services for the device.
Make sure that the Java server is properly installed and your OUI applications are placed
in the proper directories. Then you can use the mobile browser in the device to navigate to
your OUI application.

Using MS Internet Explorer 5.x
One advantage of using OUI is that you can preview your applications in one of the most
commonly available web browsers: Microsoft Internet Explorer 5.x (IE).

Pointing that browser at the application URL produces the result shown in Figure 2-4. The
OUI application functions much as it would in a mobile browser.
Openwave Usability Interface Getting Started 15

http://developer.openwave.com

Creating a OUI Service
Previewing Your OUI Application2
Figure 2-4. Previewing using MS IE

If there are errors in your Java code, Explorer displays Java error codes that aren’t
available in a mobile browser. You may find this feature of OUI valuable in debugging
your applications and detecting server-side problems.
16 Getting Started Openwave Usability Interface

Creating a OUI Service
Raw Mode: An Extra Operation Mode 2
Raw Mode: An Extra Operation Mode
Through its abstractions, OUI encourages the creation of applications that offer a high
level of usability. However, in certain cases you may require full control of WML.

OUI is flexible enough to address such cases, by providing a mechanism called Raw
Mode.

All OUI objects support the Raw Mode and configuring any object in Raw Mode results in
the following:

1 When rendering, the object mode is ignored.

2 The differences between various devices are ignored.

3 The particular segment of WML markup associated with the object.

Use Raw Mode sparingly—not as part of your everyday OUI programming. Do not resort
to the programming style shown in Listing 2-1unless you are an advanced programmer
and very familiar with OUI.

Listing 2-1. Building a task using extensions not supported by the object model

DeviceContext dc = new DeviceContext(request, response);

Deck myDeck = new Deck();

Card myCard = new Card("Raw","Task is Raw");
myCard.beginParagraph();

myCard.addText("Just checking raw mode on task primary path ");

Task myTask = new Task();
myTask.setToRawMode();

myTask.setDirectDefinition("<spawn

href=\"http://www.openwave.com\"><catch
/></spawn>");

myCard.addPrimaryPathTask(myTask,"Spawn","Spawn");

myCard.endParagraph();
myDeck.addCard(myCard);

dc.render(myDeck);
Openwave Usability Interface Getting Started 17

Creating a OUI Service
Raw Mode: An Extra Operation Mode2
18 Getting Started Openwave Usability Interface

3
Chapter 3 OUI Application
Fundamentals
This chapter provides more information about the main OUI abstractions, along with some
examples using the WML tag library (and in one case, the XHTML tag library). It should
help you start experimenting with OUI.

Menus
In a way, menus are the most obvious OUI abstraction. The Nokia WML model forces
developers to use lists of hyperlinks. Openwave phones are better served by the
<select>/<option> WML construct, because it provides users with numbered lists and
numeric key accelerators. In addition, the Openwave Mobile Browser is the only widely
deployed WAP browser that allows in-line icons on menus. This last feature is typically
left unexploited in Europe for the sake of interoperability across different phones.

OUI menus make it possible for you to write applications with advanced features, and the
library makes sure that your applications degrade gracefully on devices that do not fully
support those features.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>
 <oui:card id="start" title="Wireless World">
 <oui:p align="left" mode="nowrap">
 <oui:menu>
 <oui:menu_item href="ema.jsp" text="Email" icon="envelope1" />
 <oui:menu_item href="fin.jsp" text="Finance" icon="graph1" />
 <oui:menu_item href="ent.jsp" text="Entertainment" icon="videocam" />
 <oui:menu_item href="spo.jsp" text="Sports" icon="football" />
 <oui:menu_item href="new.jsp" text="News & weather" icon="partcloudy" />
 <oui:menu_item href="tra.jsp" text="Travel" icon="plane" />
 <oui:menu_item href="sho.jsp" text="Shopping" icon="dollarsign" />
 <oui:menu_item href="oth.jsp" text="Other" icon="folder1" />
 </oui:menu>
 </oui:p>
 </oui:card>
</oui:wml>
Openwave Usability Interface Getting Started 19

OUI Application Fundamentals
Menus3
The sample code is rendered like this for the Nokia browser:

Openwave phones, though, have a different way to render menus: numbered lists (note the
in-line icons).

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The sample code is rendered like this for graphical Openwave Mobile Browsers:

Please observe that in-line icons are not just a fancy add-on: they improve users’
interactive experiences. For example, you can use icons on the first page of a calendar
application to visualize that an appointment is taking place within 16 hours. What user
could resist the temptation to hit your application at least once each day?
20 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Forms and Primary Paths 3
Forms and Primary Paths
Forms are sets of widgets that collect user input. Nokia browsers and text-based and
graphical Openwave Mobile Browsers support forms differently (see “Elective Forms vs.
Wizards” in the Openwave Usability Guidelines).

With the OUI Form object, you assemble your input elements and picker objects (a picker
object is essentially a <select> construct with the single purpose of picking an item out
of a list).

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:form id="train" title="Find your train">

Start in (min 3):
<oui:input type="text" size="6" title="from" name="startstation" value="" />

End in (min 3):
<oui:input type="text" size="6" title="to" name="endstation" value="" />

When:
<oui:picker name="when" title="when">
<oui:option value="3">within 3 hours</oui:option>
<oui:option value="9">within 9 hours</oui:option>
<oui:option value="0">whenever</oui:option>

</oui:picker>

//Primary Path
<oui:primary_path short_label="Find" long_label="Find station">

<oui:go href="search.jsp">
<oui:postfield name="startstation" value="$startstation" />
<oui:postfield name="endstation" value="$endstation" />
<oui:postfield name="when" value="$when" />

</oui:go>
</oui:primary_path>

</oui:form>
</oui:wml>

If you know WML, this code should make sense: A form with three form elements. The
only part that may be unclear is the primary path. According to the Openwave usability
guidelines, a primary path is the activity that most users are likely to perform when
accessing a certain card. On the Openwave Mobile Browser, primary paths should be
associated with the main softkey (the Accept key) through the <do type="accept">
WML construct. On browsers without softkey support, primary paths are often more
usable if implemented with a hyperlink. As a consequence, there is no generic WML best
practice that guarantees satisfactory results for all phones.

OUI fixes this by letting you specify the intended main activity for each card. This
abstraction has been conveniently called “primary path”.

NOTE A primary path can contain either a URL or a more complex task (as in the
example above). In addition, you can specify two labels: long and short. The short one is
used for softkeys; the long one is used for hyperlinks.
Openwave Usability Interface Getting Started 21

OUI Application Fundamentals
Forms and Primary Paths3
The sample code is rendered like this for the Nokia browser:

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The sample code is rendered like this for graphical Openwave Mobile Browsers:
22 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Secondary Paths and Side Paths 3
XHTML Tag Library
While this doesn’t dig deeply into the details of the XHTML tab library, here is how the
from in the previous example is implemented using it:

<%@ taglib uri="/WEB-INF/tld/xhtmloui.tld" prefix="oui" %>

<oui:html xmlns="http://www.w3.org/1999/xhtml">
<oui:head>

<oui:title>Find your train</oui:title>
</oui:head>
<oui:body>

<oui:form action="search.jsp">

Start in (min 3):
<oui:input type="text" size="6" name="startstation" value="" />

<oui:br/>
End in (min 3):
<oui:input type="text" size="6" name="endstation" value="" />

<oui:br/>
When:<oui:br/>

<oui:select name="when">
<oui:option value="3">within 3 hours</oui:option>
<oui:option value="9">within 9 hours</oui:option>
<oui:option value="0">whenever</oui:option>

</oui:select>

<oui:input type="submit" value="Find station" name="submit"/>

</oui:form>
</oui:body>

</oui:html>

Of course OUI still delivers WML to actual WAP devices, but that doesn’t prevent you
from experimenting with a new technology.

Secondary Paths and Side Paths
Primary paths were discussed in the previous sections. You should always code your
applications so that there is only one primary path. Of course, in many cases you need to
offer users multiple choices. Secondary paths serve this purpose. In general, a secondary
path is an activity that many users perform occasionally.

You can code as many secondary path as you want in each card. Even none. If you are
coding more than four or five secondary paths for a single card, though, you ask yourself
whether you’ve picked the best possible structure: clogging the interface of a mobile
application is a very bad idea.
Openwave Usability Interface Getting Started 23

OUI Application Fundamentals
Secondary Paths and Side Paths3
Here is an example of a secondary path:

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="delete" title="Delete Email">
<oui:p>

Delete email message from Grzegorz?

<oui:primary_path short_label="No">
<oui:prev />

</oui:primary_path>

<oui:secondary_path short_label="Yes">
<oui:go href="delete.jsp">
<oui:postfield name="emailid" value="573ad8sd9f994da8798" />

</oui:go>
</oui:secondary_path>

</oui:p>
</oui:card>

</oui:wml>

The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:
24 Getting Started Openwave Usability Interface

OUI Application Fundamentals
TaskMenus 3
The sample code is rendered like this for graphical Nokia:

OUI also supports the concept of side paths, that is, activities that a few users will perform
sparingly.

TaskMenus
The new graphical Openwave Mobile Browser has a graphical widget that increases
usability, the task menu. A task menu is a bit like the windows Start button. With the task
menu, users don’t lose the context of the card they are operating, since the content of the
card is only partially covered by the menu. A task menu is an excellent way to group
numerous secondary paths. When you use a task menu, you get the advanced behavior for
the graphical browser. Text-based browsers show the menu in a separate card; access to
that card is implemented as a secondary path for the card with the menu.

NOTE OUI does not let you implement a secondary path and a task menu for the same
card.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="Inbox" title="Openwave Email">
<oui:p mode="nowrap">

<oui:menu>
<oui:menu_item href="ema.jsp?344b53" title="View" text="Luca

Passani:Portofino" />
<oui:menu_item href="ema.jsp?345a29" title="View" text="Lars Knudesn:

Fixed!" />
<oui:menu_item href="ema.jsp?345a49" title="View" text="Grzegorz

 Cipiel:RE:Installer.." />
<oui:menu_item href="ema.jsp?345a45" title="View" text="Jaycelle Lao:

Urgent Issue " />
<oui:menu_item href="ema.jsp?345a59" title="View" text="Srini

Bhag..:Vegetarian recipies." />
<oui:menu_item href="ema.jsp?345a59" title="View" text="Raj: Re:I need an

answer" />
<oui:menu_item href="ema.jsp?345a23" title="View" text="Heidi Gilstad:

RE:Copenhagen" />
<oui:menu_item href="ema.jsp?345a24" title="View" text="Sandra Bella:is

Tivoli open?" />
<oui:menu_item href="ema.jsp?345a25" title="View" text="Andrea

 Masella:Stasera? " />
</oui:menu>
Openwave Usability Interface Getting Started 25

OUI Application Fundamentals
TaskMenus3
</oui:p>
<oui:task_menu short_label="Menu" long_label="Show Menu">
<oui:menu_item href="#compose" text="Compose New"/>
<oui:menu_item href="#viewfldr" text="View Folders"/>
<oui:menu_item href="#newfldr" text="Create New Folder"/>
<oui:menu_item href="#signout" text="Sign Out"/>

</oui:task_menu>
</oui:card>

</oui:wml>

The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The sample code is rendered like this for Nokia browsers:
26 Getting Started Openwave Usability Interface

OUI Application Fundamentals
ComboMenu 3
ComboMenu
Another nice feature of the new graphical Openwave Mobile Browser is its ability
possibility to display multiple widgets in the same card. One commonly used
configuration is a Menu followed by another bit of WML code or user-input constructs.
Unfortunately, the WML code to achieve this effect on the graphical browser does not
degrade gracefully on a text-based browser.

OUI offers a solution in the form of a ComboMenu object. A ComboMenu requires two
components:

• A Menu

• An Appendix: Some UI controls (or just a bit of WML code) conveniently wrapped
into an object called Appendix.

When rendering, graphical browsers receive the fully fledged composite GUI. Text-based
browsers receive a card with a menu and a card with the controls in the appendix. A new
menu item is conveniently added as the last one of the menu to point to the new card for
the textual phone.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="start" title="Wireless World">
<oui:p align="left" mode="nowrap">

<oui:combo_menu>
<oui:menu>

<oui:menu_item href="ema.jsp" text="Email" icon="envelope1" />
<oui:menu_item href="fin.jsp" text="Finance" icon="graph1" />
<oui:menu_item href="ent.jsp" text="Entertainment" icon="videocam" />
<oui:menu_item href="spo.jsp" text="Sports" icon="football" />
<oui:menu_item href="new.jsp" text="News & weather" icon="partcloudy" />
<oui:menu_item href="tra.jsp" text="Travel" icon="plane" />
<oui:menu_item href="sho.jsp" text="Shopping" icon="dollarsign" />
<oui:menu_item href="oth.jsp" text="Other" icon="folder1" />

</oui:menu>

<oui:appendix title="Search">
<oui:p>

Search for:
<oui:input type="text" name="keyword" value="" title="keyword" />

</oui:p>
<oui:primary_path href="" short_label="Search" long_label="Search now" />

</oui:appendix>
</oui:combo_menu>

</oui:p>
</oui:card>

</oui:wml>
Openwave Usability Interface Getting Started 27

OUI Application Fundamentals
ComboMenu3
Observe the power of the graphical Openwave Mobile Browser:

The Openwave textual browsers are given a new card. The last menu item points to it.

Nokia browsers support elective forms, so they do not need a new card.
28 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Publishing Large Chunks of Text: BodyPager 3
Publishing Large Chunks of Text: BodyPager
The maximum deck size in Europe is about 1.3 kilobytes. Unfortunately, determining the
amount of text that ends up on decks is not always simple. OUI offers a solution through
the BodyPager object. In the presence of large amounts of text, the BodyPager splits the
content in conveniently sized pages and makes sure that navigation across pages is
supported automatically. As an example, here is an excerpt from Lewis Carroll’s Alice In
Wonderland. This example also includes header and footer information, using the
<bp_header> and <bp_footer> tags.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>

<oui:body_pager title="Alice" text_link_forward="Skip" text_link_exit="Exit"
url_link_exit="main.jsp">

<oui:bp_header>
<oui:p mode="wrap">
CANTO I - The Trystyng
</oui:p>
</oui:bp_header>
ONE winter night, at half-past nine,

Cold, tired, and cross, and muddy,

I had come home, too late to dine,

And supper, with cigars and wine,

Was waiting in the study.

There was a strangeness in the room,

And Something white and wavy

Was standing near me in the gloom -

I took it for the carpet-broom

Left by that careless slavey.

But presently the Thing began

To shiver and to sneeze:

On which I said "Come, come, my man!

That's a most inconsiderate plan.

Less noise there, if you please!"

"I've caught a cold," the Thing replies,

"Out there upon the landing."

I turned to look in some surprise,

And there, before my very eyes,

A little Ghost was standing!

He trembled when he caught my eye,

And got behind a chair.

"How came you here," I said, "and why?

I never saw a thing so shy.

Come out! Don't shiver there!"

...

"ONE slice! And may I ask you for

Another drop of gravy?"

Openwave Usability Interface Getting Started 29

OUI Application Fundamentals
Publishing Large Chunks of Text: BodyPager3
I sat and looked at him in awe,

For certainly I never saw

A thing so white and wavy.

And still he seemed to grow more white,

More vapoury, and wavier -

Seen in the dim and flickering light,

As he proceeded to recite

His "Maxims of Behaviour."

<oui:bp_footer>
<oui:p>
From: Alice in Wonderland, Lewis Carroll
</oui:p>
</oui:bp_footer>
</oui:body_pager>

The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The lack of soft key support on Nokia devices forces users to scroll to the bottom of the
page to find navigation.

NOTE Openwave browsers introduce the optimization of preloading the first page,
whenever the gateway allows this extension to pass through.
30 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Making Phone Calls: Caller (and Rendering Directives) 3
Making Phone Calls: Cal ler (and Rendering Directives)
The lack of WTAI support in many phones has prevented developers from deploying this
useful WAP feature. The OUI library offers an abstraction called Caller. A Caller will
resolve into a WTAI call for browsers that support it. Other browsers will receive a new
card containing the telephone number on a page of its own. This allows users of non-
WTAI compliant devices to start a phone call through proprietary mechanisms (notably,
the “use-number” feature on Nokia phones).

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="pharmacy" title="Churchill Pharmacy">
oui:rendering_directive apply_to="card">

<oui:method name="enforce_title" />
</oui:rendering_directive>

<oui:p>
8 Ladybrook Square,
Ladybrook Square
Hemsel
Nottinghamshire
GY52 7UL

See map

</p>
<p mode="nowrap">
Tel:(01452)9344615582

Fax:(01452)2355810158

info@openwave.com

<oui:primary_path short_label="Call">

<oui:caller phone_number="014529344615582" text="Call Churchill Pharmacy" />
</oui:primary_path>

</oui:p>
</oui:card>

</oui:wml>

Another OUI feature that you'll find handy is the rendering directive. You can think of a
rendering directive like an option to a compiler. You use them to tell OUI to divert from its
default behavior in some specific cases. In the code above, you see an example of the
enforce_title directive. Some browsers honor the value of the title attribute on each
card. Some don’t. There are cases when you want the title to be displayed anyway. Putting
the title in the body of the card is not the best solution, since you will see the title repeated
on devices that support real titles. The rendering directive delegates the problem to OUI.
In practice, when using the rendering directive, each browser will display the title once
(and only once).
Openwave Usability Interface Getting Started 31

OUI Application Fundamentals
Making Phone Calls: Caller (and Rendering Directives)3
The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The sample code is rendered like this for Nokia browsers:
32 Getting Started Openwave Usability Interface

OUI Application Fundamentals
WML Tables on All Browsers: Table 3
WML Tables on All Browsers: Table
Some devices do not properly support WML tables. This has prevented developers from
using this valuable feature. OUI supports tables. WML tables are produced for devices
that support them. Other devices are presented the same information using a convenient
lay-out that does not require the feature tags.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="starttable" title="FIFA World Cup">
<oui:p align="center">

FIFA World Cup European Qualifying

Group Eight:

</oui:p>
<oui:p align="left">

<oui:table logic="row" columns="2">
<oui:tr>
<oui:td>Team </oui:td>
<oui:td>Pts</oui:td>

</oui:tr>
<oui:tr>
<oui:td>1.Italy </oui:td>
<oui:td>20</oui:td>

</oui:tr>
<oui:tr>
<oui:td>2.Romania</oui:td>
<oui:td>16</oui:td>

</oui:tr>
<oui:tr>
<oui:td>3.Georgia</oui:td>
<oui:td>10</oui:td>

</oui:tr>
<oui:tr>
<oui:td>4.Hungary</oui:td>
<oui:td>8</oui:td>

</oui:tr>
oui:tr>
<oui:td>5.Lithuania</oui:td>
<oui:td>2</oui:td>

</oui:tr>
</oui:table>

<oui:primary_path href="viewgroup.jsp?id=9" short_label="Next"
long_label="See Group 9" />

<oui:secondary_path href="eurozone.jsp" short_label="Up"
long_label="Europeanzone" />

<oui:secondary_path href="viewgroup.jsp?id=7" short_label="Back"
long_label="See Group 7" />

</oui:p>
</oui:card>

</oui:wml>
Openwave Usability Interface Getting Started 33

OUI Application Fundamentals
WML Tables on All Browsers: Table3
The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:

The sample code is rendered like this for Nokia browsers:

Older Nokia browsers do not support tables.
34 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Reducing Perceived Latency: Mobile-Originated Prefetch 3
Reducing Perceived Latency: Mobile-Originated Prefetch
Mobile-originated prefetch is the capability some browsers have to preload one or more
decks, under the assumption that users are likely to navigate there soon anyway. This
optimization goes a long way into improving application latency, as perceived by the user.
Unfortunately, some devices (and gateways) break on this extension. OUI offers a solution
by making sure that this feature is automatically discarded for device-gateway
combinations that can’t handle it.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:head>
<oui:prefetch href="nextemailmsbbit.jsp" />

</oui:head>

<oui:card id="mop" title="Long Email message">
<oui:p align="left" mode="nowrap">

From: Domenico <domenico@openwave.com>

To:Luca Passani <luca@openwave.com>

Date:Wed,10 Oct 2001

</oui:p>
<oui:p mode="wrap">

Subject: It will take some time to read the whole message..

Hallo Luca, it's time to substantiate your guesses with facts.
Here is my analysis of the situation. I am sorry
that this message is a bit long, but woul'll find a lot
of useful info. So please make yourself
comfortable and start reading

...

<oui:primary_path href="nextemailmsbbit.jsp" short_label="More"
long_label="24% read. Read more" />

<oui:task_menu short_label="Menu" long_label="Show Menu">
<oui:menu_item href="reply.jsp" text="Reply"/>
<oui:menu_item href="reply.jsp" text="Reply All"/>
<oui:menu_item href="delete.jsp" text="Delete"/>
<oui:menu_item href="forwars.jsp" text="Forward"/>
<oui:menu_item href="viewfold.jsp" text="Move to Folder"/>
<oui:menu_item href="newfldr.jsp" text="Create New Folder"/>
<oui:menu_item href="signout.jsp" text="Sign Out"/>

</oui:task_menu>

</oui:p>
</oui:card>

</oui:wml>

Prefetch is not a concept you can show with static images—a video might do the job!
Openwave Usability Interface Getting Started 35

OUI Application Fundamentals
Application-level Optimization: Conditional Tags3
Application- level Optimization: Condit ional Tags
OUI performs a lot of optimization behind the scenes. This is core usability support. If you
want to use OUI to optimize usability even more, you can do it at the application level.
OUI offers a great deal of support for this through conditional tags: <oui:if>,
<oui:condition>, and <oui:condition_list>.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="cond" title="Conditional tag">
<oui:p align="left">

GUI device detector activated...

<oui:if agentfamily="upgui">
I can smell a GUI browser here

</oui:if>

<oui:if agentfamily="upgui" negate="true">
I cannot smell any GUI browser here

</oui:if>

</oui:wml>

The implication is that you can add or remove specific items for specific devices (or
classes of devices), whenever you are not satisfied with the default behavior of the library.
You just need a few touches here and there.

The sample code is rendered like this for graphical Openwave Mobile Browsers:

The sample code is rendered like this for text-based Openwave Mobile Browsers:
36 Getting Started Openwave Usability Interface

OUI Application Fundamentals
Application-level Optimization: Conditional Tags 3
The sample code is rendered like this for Nokia browsers:

Of course, conditional tags come in a more complex format, too:

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="condtag" title="Conditional Tags">
<oui:p align="left">

Openwave Detector activated...

<oui:if>
<oui:conditionlist logic="AND">

<oui:condition gateway_vendor="openwave" />
<oui:conditionlist logic="OR">

<oui:condition agentfamily="upgui" />
<oui:condition agentfamily="uptext" />

</oui:conditionlist>
</oui:conditionlist>

<oui:then>
You have an Openwave browser and you are going through
an Openwave gateway

</oui:then>

<oui:else>
Either you browser or you gateway are not
Openwave. It may be both.

</oui:else>

</oui:if>

</oui:p>
</oui:card>

</oui:wml>

Conditions can depend on:

• Gateway vendor name

• User agent string

• Class of device

• Version of the browser

• Any combination of the above
Openwave Usability Interface Getting Started 37

OUI Application Fundamentals
Raw Mode: When All Else Fails3
Raw Mode: When All Else Fai ls
Ideally, OUI contains all you need to build good wireless applications. However, there
may be cases where a developer needs to hack bits of mark-up in ways that are not natively
supported by the library. In those cases, it is possible to resort to the so-called raw mode.

<%@ taglib uri="/WEB-INF/tld/oui.tld" prefix="oui" %>
<oui:wml>

<oui:card id="raw" title="Raw Mode">

<oui:if agentfamily="upgui">
<oui:raw_mode element="do">
<do type="accept" label="Spawn">

<spawn href="http://www.openwave.com" />
</do>

</oui:raw_mode>
</oui:if>

<oui:p align="left">
UPText browser should see a SPAWN....
 </oui:p>

</oui:card>

</oui:wml>

The sample code is rendered like this for text-based Openwave Mobile Browsers:
38 Getting Started Openwave Usability Interface

	Legal Notice
	Contents
	Preface
	About This Book
	Audience
	Related Documentation
	Technical Support
	Other Resources
	WAP
	Java

	Style and Typographical Conventions

	Introducing OUI
	The WML Dilemma
	The OUI Solution
	An Example with Menus
	Getting Started

	Creating a OUI Service
	Installing OUI and a Java Server
	Openwave SDK
	OUI Programming
	WML Tag Library
	XHTML Tag Library
	Java Servlets

	Previewing Your OUI Application
	Using the Openwave SDK
	Using Other SDKs
	Using Mobile Browser Devices
	Using MS Internet Explorer 5.x

	Raw Mode: An Extra Operation Mode

	OUI Application Fundamentals
	Menus
	Forms and Primary Paths
	XHTML Tag Library

	Secondary Paths and Side Paths
	TaskMenus
	ComboMenu
	Publishing Large Chunks of Text: BodyPager
	Making Phone Calls: Caller (and Rendering Directives)
	WML Tables on All Browsers: Table
	Reducing Perceived Latency: Mobile-Originated Prefetch
	Application-level Optimization: Conditional Tags
	Raw Mode: When All Else Fails

